Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation

被引:0
|
作者
Zhang, Hua [1 ]
Han, LiJia [1 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
MKdV-Burgers equation; Uniform global well-posedness; Inviscid limit behavior; LOW-REGULARITY; CAUCHY-PROBLEM; KDV;
D O I
10.1016/j.na.2009.02.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the Cauchy problem for the modified Korteweg-de Vries-Burgers equation u(t) + u(xxx) + epsilon vertical bar partial derivative(x)vertical bar(2 alpha)u = 2(u(3))(x), u(0) = phi where 0 < epsilon, alpha <= 1 and u is a real-valued function, we show that it is uniformly globally well-posed in H-s (s >= 1) for all epsilon is an element of (0, 1]. Moreover, we prove that for any s >= 1 and T > 0, its solution converges in C ([0, T]; H-s) to that of the MKdV equation if epsilon tends to 0. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1708 / E1715
页数:8
相关论文
共 50 条
  • [31] The well-posedness of the Korteweg-de Vries-Benjamin-Ono equation
    Guo, BL
    Huo, ZH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (02) : 444 - 458
  • [32] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77
  • [33] Boundary stabilization of the Generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING: SELECTED TOPICS ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, 2007, : 177 - 180
  • [34] Inverse Optimal Control of Korteweg-de Vries-Burgers Equation
    Cai, Xiushan
    Lin, Yuhang
    Zhan, Xisheng
    Wan, Liguang
    Liu, Leibo
    Lin, Cong
    IFAC PAPERSONLINE, 2023, 56 (02): : 1351 - 1356
  • [35] Collision dynamics of fronts in the Korteweg-de Vries-Burgers equation
    Puri, S
    Desai, RC
    Kapral, R
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 89 (1-2) : 15 - 27
  • [36] Asymptotic behavior of the generalized Korteweg-de Vries-Burgers equation
    Dlotko, Tomasz
    Sun, Chunyou
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (03) : 571 - 595
  • [37] Boundary linear stabilization of the modified generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Chentouf, Boumediene
    Alalabi, Ala'
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [38] Nonstationary solutions of a generalized Korteweg-de Vries-Burgers equation
    A. P. Chugainova
    Proceedings of the Steklov Institute of Mathematics, 2013, 281 : 204 - 212
  • [39] The Korteweg-de Vries-Burgers equation and its approximate solution
    Wang, Xiaohui
    Feng, Zhaosheng
    Debnath, Lokenath
    Gao, David Y.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (06) : 853 - 863
  • [40] Distributed control of the generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Al-Jamal, Rasha H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008