The speed limit of optoelectronics

被引:22
|
作者
Ossiander, M. [1 ,6 ]
Golyari, K. [1 ,2 ]
Scharl, K. [1 ,2 ]
Lehnert, L. [1 ,2 ]
Siegrist, F. [1 ,2 ]
Buerger, J. P. [1 ,2 ]
Zimin, D. [1 ,2 ]
Gessner, J. A. [1 ,2 ]
Weidman, M. [1 ,2 ]
Floss, I [3 ]
Smejkal, V [3 ]
Donsa, S. [3 ]
Lemell, C. [3 ]
Libisch, F. [3 ]
Karpowicz, N. [4 ]
Burgdoerfer, J. [3 ]
Krausz, F. [1 ,2 ]
Schultze, M. [2 ,5 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, EU, Germany
[2] Ludwig Maximilians Univ Munchen, Fak Phys, Coulombwall 1, D-85748 Garching, EU, Germany
[3] Vienna Univ Technol, Inst Theoret Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, EU, Austria
[4] CNR NANOTEC Inst Nanotechnol, Via Monteroni, I-73100 Lecce, EU, Italy
[5] Graz Univ Technol, Inst Expt Phys, Petersgasse 16, A-8010 Graz, EU, Austria
[6] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA
基金
奥地利科学基金会;
关键词
ATTOSECOND; PHOTOABSORPTION; SPECTROSCOPY; HARMONICS; WAVE;
D O I
10.1038/s41467-022-29252-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid's electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency. Though strong-field induced carrier excitation allows for exploring ultrafast electronic properties of a material, characterizing post-excitation dynamics is a challenge. Here, the authors report linear petahertz photoconductive sampling in a solid and use it to real-time probe conduction band electron motion.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The speed limit of optoelectronics
    M. Ossiander
    K. Golyari
    K. Scharl
    L. Lehnert
    F. Siegrist
    J. P. Bürger
    D. Zimin
    J. A. Gessner
    M. Weidman
    I. Floss
    V. Smejkal
    S. Donsa
    C. Lemell
    F. Libisch
    N. Karpowicz
    J. Burgdörfer
    F. Krausz
    M. Schultze
    Nature Communications, 13
  • [2] In search of lost time: attosecond physics, petahertz optoelectronics, and quantum speed limit
    Zheltikov, A. M.
    PHYSICS-USPEKHI, 2021, 64 (04) : 370 - 385
  • [3] HIGH-SPEED OPTOELECTRONICS
    NAGARAJAN, R
    GIBONEY, K
    YU, RC
    TAUBER, D
    BOWERS, J
    RODWELL, M
    COMPOUND SEMICONDUCTORS 1994, 1995, (141): : 531 - 536
  • [4] HIGH-SPEED OPTOELECTRONICS
    ARMENDARIZ, MG
    HIETALA, VM
    MYERS, DR
    MICROWAVE JOURNAL, 1994, 37 (06) : 64 - &
  • [5] Optics in the nanoscale limit for optoelectronics and biophotonics
    Neogi, Arup
    EIGHTH SYMPOSIUM OPTICS IN INDUSTRY, 2011, 8287
  • [6] OPTOELECTRONICS - COMPUTING AT THE SPEED OF LIGHT
    WALDROP, MM
    SCIENCE, 1993, 259 (5094) : 456 - 456
  • [7] OPTOELECTRONICS APPLIED TO VARIABLE SPEED DRIVES
    CORNISH, LS
    ELECTRONIC ENGINEERING, 1974, 46 (560): : 18 - 19
  • [8] Speed Limit
    程炜
    中学英语园地(高二版), 2004, (Z1) : 40 - 40
  • [9] Speed limit
    Tyson, ND
    NATURAL HISTORY, 2005, 114 (01) : 18 - +
  • [10] SPEED LIMIT
    GRASSIE, S
    NEW SCIENTIST, 1983, 99 (1377) : 964 - 964