Optics in the nanoscale limit for optoelectronics and biophotonics

被引:1
|
作者
Neogi, Arup [1 ]
机构
[1] Univ N Texas, Dept Phys, Denton, TX 76203 USA
来源
关键词
Nanophotonics; plasmonic light emitters; nonlinear optical sources; tunable photonic crystals; molecular wires; lab-on-a-chip; PHOTONIC CRYSTALS; EMISSION;
D O I
10.1117/12.915824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Contemporary optical effects and photonic component necessary for the realization of nanoscale integrated photonic circuit for developing lab-on-a-chipincluding light sources, detectors and filters is summarized. We present the concept of a lab-on-a-chip for the next generation optoelectronics and biophotonic industry including novel nanoscale material systems for lasers and detectors. Using principles such as plasmonics and near-field optics highly efficient nanophotonic lasers or modulators can be realized. The light source can be tuned from the UV to the visible range using ion implantation of noble metal such as Ag or Au in Silicon or silica. The presence of Ag or Ag nanoparticles can result in a significant enhancement of the light emission in the UV, green or red wavelength regime. Novel molecular electronics materials has been used to design olegonucleotide based photodetectors on transparent substrates for the detection of analytes in an all-optical system. Either a transparent GaN semiconductor or glass can be used as an substrate. Hybrid photonic crystal based microfluidic channels synthesized using hydrogel material can be optimized to control the flow of fluid using light. In this paper, the device components developed at the University of North Texas will be presented for the realization of a lab-on-a-chip.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Information optics in biophotonics
    Gluckstad, Jesper
    2010 9TH EURO-AMERICAN WORKSHOP ON INFORMATION OPTICS, 2010,
  • [2] Optics and biophotonics of nanoparticles with a plasmon resonance
    Khlebtsov, N. G.
    QUANTUM ELECTRONICS, 2008, 38 (06) : 504 - 529
  • [3] MODERN OPTICS AND OPTOELECTRONICS
    PROKOPENKO, VT
    SUKHORUKOVA, MV
    JOURNAL OF OPTICAL TECHNOLOGY, 1995, 62 (08) : 491 - 493
  • [4] Fibre optics & optoelectronics
    Australian Electronics Engineering, 1999, 32 (01):
  • [5] THE DEVELOPMENT OF OPTICS IN OPTOELECTRONICS
    BULABOIS, J
    JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1982, 13 (06): : 319 - &
  • [6] TRENDS IN OPTICS AND OPTOELECTRONICS
    RUTLEDGE, WC
    ISA TRANSACTIONS, 1990, 29 (01) : 27 - 30
  • [7] PLASTICS OPTICS FOR OPTOELECTRONICS
    PASCO, IK
    EVEREST, JH
    OPTICS AND LASER TECHNOLOGY, 1978, 10 (02): : 71 - 76
  • [8] Lasers & optics - Biophotonics center established
    不详
    R&D MAGAZINE, 2002, 44 (12): : 12 - 12
  • [9] The speed limit of optoelectronics
    M. Ossiander
    K. Golyari
    K. Scharl
    L. Lehnert
    F. Siegrist
    J. P. Bürger
    D. Zimin
    J. A. Gessner
    M. Weidman
    I. Floss
    V. Smejkal
    S. Donsa
    C. Lemell
    F. Libisch
    N. Karpowicz
    J. Burgdörfer
    F. Krausz
    M. Schultze
    Nature Communications, 13
  • [10] The speed limit of optoelectronics
    Ossiander, M.
    Golyari, K.
    Scharl, K.
    Lehnert, L.
    Siegrist, F.
    Buerger, J. P.
    Zimin, D.
    Gessner, J. A.
    Weidman, M.
    Floss, I
    Smejkal, V
    Donsa, S.
    Lemell, C.
    Libisch, F.
    Karpowicz, N.
    Burgdoerfer, J.
    Krausz, F.
    Schultze, M.
    NATURE COMMUNICATIONS, 2022, 13 (01)