The speed limit of optoelectronics

被引:22
|
作者
Ossiander, M. [1 ,6 ]
Golyari, K. [1 ,2 ]
Scharl, K. [1 ,2 ]
Lehnert, L. [1 ,2 ]
Siegrist, F. [1 ,2 ]
Buerger, J. P. [1 ,2 ]
Zimin, D. [1 ,2 ]
Gessner, J. A. [1 ,2 ]
Weidman, M. [1 ,2 ]
Floss, I [3 ]
Smejkal, V [3 ]
Donsa, S. [3 ]
Lemell, C. [3 ]
Libisch, F. [3 ]
Karpowicz, N. [4 ]
Burgdoerfer, J. [3 ]
Krausz, F. [1 ,2 ]
Schultze, M. [2 ,5 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, EU, Germany
[2] Ludwig Maximilians Univ Munchen, Fak Phys, Coulombwall 1, D-85748 Garching, EU, Germany
[3] Vienna Univ Technol, Inst Theoret Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, EU, Austria
[4] CNR NANOTEC Inst Nanotechnol, Via Monteroni, I-73100 Lecce, EU, Italy
[5] Graz Univ Technol, Inst Expt Phys, Petersgasse 16, A-8010 Graz, EU, Austria
[6] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA
基金
奥地利科学基金会;
关键词
ATTOSECOND; PHOTOABSORPTION; SPECTROSCOPY; HARMONICS; WAVE;
D O I
10.1038/s41467-022-29252-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid's electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency. Though strong-field induced carrier excitation allows for exploring ultrafast electronic properties of a material, characterizing post-excitation dynamics is a challenge. Here, the authors report linear petahertz photoconductive sampling in a solid and use it to real-time probe conduction band electron motion.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] PICOSECOND OPTOELECTRONICS IN HIGH-SPEED INTEGRATED-CIRCUITS
    JAIN, RK
    STENERSEN, K
    SNYDER, DE
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 439 : 174 - 176
  • [42] Exploring the relationship between risk perception, speed limit credibility and speed limit compliance
    Yao, Yao
    Carsten, Oliver
    Hibberd, Daryl
    Li, Penghui
    TRANSPORTATION RESEARCH PART F-TRAFFIC PSYCHOLOGY AND BEHAVIOUR, 2019, 62 : 575 - 586
  • [43] Materials for ultra-efficient, high-speed optoelectronics
    Moody, Galan
    Islam, M. Saif
    MRS BULLETIN, 2022, 47 (05) : 475 - 484
  • [44] Super high-speed optoelectronics: technological fundamentals and economics
    Osinsky, V
    SELECTED PAPERS FROM THE INTERNATIONAL CONFERENCE ON OPTOELECTRONIC INFORMATION TECHNOLOGIES, 2000, 4425 : 263 - 271
  • [45] Materials for ultra-efficient, high-speed optoelectronics
    Galan Moody
    M. Saif Islam
    MRS Bulletin, 2022, 47 : 475 - 484
  • [46] Doping for Speed: Colloidal Nanoparticles for Thin-Film Optoelectronics
    Noone, Kevin M.
    Ginger, David S.
    ACS NANO, 2009, 3 (02) : 261 - 265
  • [47] Breaking the photoswitch speed limit
    Grace C. Thaggard
    Kyoung Chul Park
    Jaewoong Lim
    Buddhima K. P. Maldeni Kankanamalage
    Johanna Haimerl
    Gina R. Wilson
    Margaret K. McBride
    Kelly L. Forrester
    Esther R. Adelson
    Virginia S. Arnold
    Shehani T. Wetthasinghe
    Vitaly A. Rassolov
    Mark D. Smith
    Daniil Sosnin
    Ivan Aprahamian
    Manisha Karmakar
    Sayan Kumar Bag
    Arunabha Thakur
    Minjie Zhang
    Ben Zhong Tang
    Jorge A. Castaño
    Manuel N. Chaur
    Michael M. Lerch
    Roland A. Fischer
    Joanna Aizenberg
    Rainer Herges
    Jean-Marie Lehn
    Natalia B. Shustova
    Nature Communications, 14
  • [48] 55 MPH SPEED LIMIT
    BARTH, LH
    POLICE CHIEF, 1979, 46 (04): : 11 - 11
  • [49] Advances on quantum speed limit
    量子速度极限研究进展
    Zheng, Yujun (yzheng@sdu.edu.cn), 1946, Chinese Academy of Sciences (66): : 1946 - 1956
  • [50] SPINTRONICS Beyond the speed limit
    Beach, Geoffrey
    NATURE MATERIALS, 2010, 9 (12) : 959 - 960