The speed limit of optoelectronics

被引:22
|
作者
Ossiander, M. [1 ,6 ]
Golyari, K. [1 ,2 ]
Scharl, K. [1 ,2 ]
Lehnert, L. [1 ,2 ]
Siegrist, F. [1 ,2 ]
Buerger, J. P. [1 ,2 ]
Zimin, D. [1 ,2 ]
Gessner, J. A. [1 ,2 ]
Weidman, M. [1 ,2 ]
Floss, I [3 ]
Smejkal, V [3 ]
Donsa, S. [3 ]
Lemell, C. [3 ]
Libisch, F. [3 ]
Karpowicz, N. [4 ]
Burgdoerfer, J. [3 ]
Krausz, F. [1 ,2 ]
Schultze, M. [2 ,5 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, EU, Germany
[2] Ludwig Maximilians Univ Munchen, Fak Phys, Coulombwall 1, D-85748 Garching, EU, Germany
[3] Vienna Univ Technol, Inst Theoret Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, EU, Austria
[4] CNR NANOTEC Inst Nanotechnol, Via Monteroni, I-73100 Lecce, EU, Italy
[5] Graz Univ Technol, Inst Expt Phys, Petersgasse 16, A-8010 Graz, EU, Austria
[6] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA
基金
奥地利科学基金会;
关键词
ATTOSECOND; PHOTOABSORPTION; SPECTROSCOPY; HARMONICS; WAVE;
D O I
10.1038/s41467-022-29252-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid's electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency. Though strong-field induced carrier excitation allows for exploring ultrafast electronic properties of a material, characterizing post-excitation dynamics is a challenge. Here, the authors report linear petahertz photoconductive sampling in a solid and use it to real-time probe conduction band electron motion.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Quantum speed limit
    Andreas Trabesinger
    Nature Physics, 2012, 8 (2) : 106 - 106
  • [32] Folding at the speed limit
    Yang, WY
    Gruebele, M
    NATURE, 2003, 423 (6936) : 193 - 197
  • [33] Variable speed limit
    Michelle L. Povinelli
    Nature Physics, 2006, 2 : 735 - 736
  • [34] LIMIT OF COMPUTING SPEED
    SIMON, J
    COMMUNICATIONS OF THE ACM, 1978, 21 (10) : 876 - 877
  • [35] Over the speed limit
    Robinson, Melissa R.
    Brown, Ryan A.
    Srivatsa, Uma
    Amsterdam, Ezra A.
    AMERICAN JOURNAL OF MEDICINE, 2007, 120 (10): : 851 - 853
  • [36] COMPUTING AT THE SPEED LIMIT
    BERNHARD, R
    IEEE SPECTRUM, 1982, 19 (07) : 26 - 31
  • [37] Beyond the speed limit
    Geoffrey Beach
    Nature Materials, 2010, 9 : 959 - 960
  • [38] SPEED LIMIT OPERATORS FOR OSCILLATING SPEED FUNCTIONS
    FERNOW, B
    KRENGEL, U
    OSAKA JOURNAL OF MATHEMATICS, 1994, 31 (04) : 939 - 964
  • [39] Quantum speed limit with forbidden speed intervals
    Chau, H. F.
    PHYSICAL REVIEW A, 2013, 87 (05)
  • [40] SPEED VARIANCE, ENFORCEMENT, AND THE OPTIMAL SPEED LIMIT
    GRAVES, PE
    LEE, DR
    SEXTON, RL
    ECONOMICS LETTERS, 1993, 42 (2-3) : 237 - 243