ANOMALIB: A DEEP LEARNING LIBRARY FOR ANOMALY DETECTION

被引:37
|
作者
Akcay, Samet [1 ]
Ameln, Dick [1 ]
Vaidya, Ashwin [1 ]
Lakshmanan, Barath [1 ]
Ahuja, Nilesh [1 ]
Genc, Utku [1 ]
机构
[1] Intel, Santa Clara, CA 95054 USA
关键词
Unsupervised Anomaly detection; localization;
D O I
10.1109/ICIP46576.2022.9897283
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces anomalib(1), a novel library for unsupervised anomaly detection and localization. With reproducibility and modularity in mind, this open-source library provides algorithms from the literature and a set of tools to design custom anomaly detection algorithms via a plug-and-play approach. Anomalib comprises state-of-the-art anomaly detection algorithms that achieve top performance on the benchmarks and that can be used off-the-shelf. In addition, the library provides components to design custom algorithms that could be tailored towards specific needs. Additional tools, including experiment trackers, visualizers, and hyperparameter optimizers, make it simple to design and implement anomaly detection models. The library also supports OpenVINO model-optimization and quantization for real-time deployment. Overall, anomalib is an extensive library for the design, implementation, and deployment of unsupervised anomaly detection models from data to the edge.
引用
收藏
页码:1706 / 1710
页数:5
相关论文
共 50 条
  • [31] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    MACHINE LEARNING WITH APPLICATIONS, 2023, 12
  • [32] Applications of Deep Learning Techniques to Wood Anomaly Detection
    Celik, Yaren
    Guney, Selda
    Dengiz, Berna
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT - VOL 1, 2022, 144 : 379 - 387
  • [33] Deep Hybrid Learning for Anomaly Detection in Behavioral Monitoring
    Georgakopoulos, Spiros, V
    Tasoulis, Sotiris K.
    Vrahatis, Aristidis G.
    Moustakidis, Serafeim
    Tsaopoulos, Dimitrios E.
    Plagianakos, Vassilis P.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [34] An Empirical Evaluation of Deep Learning for Network Anomaly Detection
    Malaiya, Ritesh K.
    Kwon, Donghwoon
    Suh, Sang C.
    Kim, Hyunjoo
    Kim, Ikkyun
    Kim, Jinoh
    IEEE ACCESS, 2019, 7 : 140806 - 140817
  • [35] Hyperspectral Anomaly Detection Using Deep Learning: A Review
    Hu, Xing
    Xie, Chun
    Fan, Zhe
    Duan, Qianqian
    Zhang, Dawei
    Jiang, Linhua
    Wei, Xian
    Hong, Danfeng
    Li, Guoqiang
    Zeng, Xinhua
    Chen, Wenming
    Wu, Dongfang
    Chanussot, Jocelyn
    REMOTE SENSING, 2022, 14 (09)
  • [36] A Deep Learning Approach for Efficient Anomaly Detection in WSNs
    Jothi, S. Arul
    Venkatesan, R.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (01)
  • [37] A Deep Learning Approach to Anomaly Detection in Nuclear Reactors
    Caliva, Francesco
    Ribeiro, Fabio De Sousa
    Mylonakis, Antonios
    Demaziere, Christophe
    Vinai, Paolo
    Leontidis, Georgios
    Kollias, Stefanos
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [38] SADDLE: Spacecraft Anomaly Detection using Deep Learning
    Srivastava, Ankit
    Badal, Neeraj
    Manoj, B. S.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 128 - 131
  • [39] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    Machine Learning with Applications, 2023, 12
  • [40] A review on anomaly detection techniques using deep learning
    NOMURA Y.
    Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69 (09) : 650 - 656