ANOMALIB: A DEEP LEARNING LIBRARY FOR ANOMALY DETECTION

被引:37
|
作者
Akcay, Samet [1 ]
Ameln, Dick [1 ]
Vaidya, Ashwin [1 ]
Lakshmanan, Barath [1 ]
Ahuja, Nilesh [1 ]
Genc, Utku [1 ]
机构
[1] Intel, Santa Clara, CA 95054 USA
关键词
Unsupervised Anomaly detection; localization;
D O I
10.1109/ICIP46576.2022.9897283
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces anomalib(1), a novel library for unsupervised anomaly detection and localization. With reproducibility and modularity in mind, this open-source library provides algorithms from the literature and a set of tools to design custom anomaly detection algorithms via a plug-and-play approach. Anomalib comprises state-of-the-art anomaly detection algorithms that achieve top performance on the benchmarks and that can be used off-the-shelf. In addition, the library provides components to design custom algorithms that could be tailored towards specific needs. Additional tools, including experiment trackers, visualizers, and hyperparameter optimizers, make it simple to design and implement anomaly detection models. The library also supports OpenVINO model-optimization and quantization for real-time deployment. Overall, anomalib is an extensive library for the design, implementation, and deployment of unsupervised anomaly detection models from data to the edge.
引用
收藏
页码:1706 / 1710
页数:5
相关论文
共 50 条
  • [21] Using Deep Learning for Anomaly Detection in Autonomous Systems
    Jha, Nikhil Kumar
    von Enzberg, Sebastian
    Hillebrand, Michael
    ERCIM NEWS, 2020, (122): : 47 - 48
  • [22] Automated Socket Anomaly Detection through Deep Learning
    Agrawal, Nidhi
    Yang, Min-Jian
    Xanthopoulos, Constantinos
    Thangamariappan, Vijayakumar
    Xiao, Joe
    Ho, Chee-Wah
    Schaub, Keith
    Leventhal, Ira
    2020 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2020,
  • [23] Anomaly Detection of Breast Cancer Using Deep Learning
    Ahad Alloqmani
    Yoosef B. Abushark
    Asif Irshad Khan
    Arabian Journal for Science and Engineering, 2023, 48 : 10977 - 11002
  • [24] Scaling Deep Learning Models for Spectrum Anomaly Detection
    Li, Zhijing
    Xiao, Zhujun
    Wang, Bolun
    Zhao, Ben Y.
    Zheng, Haitao
    PROCEEDINGS OF THE 2019 THE TWENTIETH ACM INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC '19), 2019, : 291 - 300
  • [25] Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
    Li, Wei
    Wu, Guodong
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 597 - 601
  • [26] Network Traffic Anomaly Detection via Deep Learning
    Fotiadou, Konstantina
    Velivassaki, Terpsichori-Helen
    Voulkidis, Artemis
    Skias, Dimitrios
    Tsekeridou, Sofia
    Zahariadis, Theodore
    INFORMATION, 2021, 12 (05)
  • [27] Deep Learning for Time Series Anomaly Detection: A Survey
    Darban, Zahra zamanzadeh
    Webb, Geoffrey i.
    Pan, Shirui
    Aggarwal, Charu
    Salehi, Mahsa
    ACM COMPUTING SURVEYS, 2025, 57 (01)
  • [28] Learning deep event models for crowd anomaly detection
    Feng, Yachuang
    Yuan, Yuan
    Lu, Xiaoqiang
    NEUROCOMPUTING, 2017, 219 : 548 - 556
  • [29] A deep learning anomaly detection framework with explainability and robustness
    Nguyen, Manh-Dung
    Bouaziz, Anis
    Valdes, Valeria
    Rosa Cavalli, Ana
    Mallouli, Wissam
    de Oca, Edgardo Montes
    18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,
  • [30] Road Anomaly Detection Through Deep Learning Approaches
    Luo, Dawei
    Lu, Jianbo
    Guo, Gang
    IEEE ACCESS, 2020, 8 : 117390 - 117404