SADDLE: Spacecraft Anomaly Detection using Deep Learning

被引:0
|
作者
Srivastava, Ankit [1 ]
Badal, Neeraj [2 ]
Manoj, B. S. [1 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Av, Thiruvananthapuram, Kerala, India
[2] Space Applicat Ctr SAC, Signal & Image Proc Area SIPA, Ahmadabad, Gujarat, India
关键词
Spacecraft Anomaly; Anomaly Detection; Data sequences; Transformer;
D O I
10.1109/SPACE63117.2024.10667898
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Efficiently detecting anomalies in spacecraft data poses a significant challenge in modern space missions. We introduce Spacecraft Anomaly Detection using Deep Learning (SADDLE), a novel transformer network-based model tailored for spacecraft anomaly detection. SADDLE leverages an attention-based encoder to analyze telemetry data, capturing broader temporal trends critical for anomaly identification. It utilizes self-conditioning for robust feature extraction across multiple telemetry modalities. Additionally, SADDLE leverages Meta Gradient Descent to adapt faster to spacecraft data characteristics, simultaneously enabling effective training with limited anomaly examples. Extensive evaluations conducted on spacecraft datasets demonstrate that SADDLE outperforms all existing methods while significantly reducing training time.
引用
收藏
页码:128 / 131
页数:4
相关论文
共 50 条
  • [1] A Comparison of Deep Learning Architectures for Spacecraft Anomaly Detection
    Lakey, Daniel
    Schlippe, Tim
    2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [2] Spacecraft Time-Series Online Anomaly Detection Using Deep Learning
    Baireddy, Sriram
    Desai, Sundip R.
    Foster, Richard H.
    Chan, Moses W.
    Comer, Mary L.
    Delp, Edward J.
    2023 IEEE AEROSPACE CONFERENCE, 2023,
  • [3] An anomaly detection method for spacecraft using relevance vector learning
    Fujimaki, R
    Yairi, T
    Machida, K
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2005, 3518 : 785 - 790
  • [4] Anomaly Detection in Logs Using Deep Learning
    Aziz, Ayesha
    Munir, Kashif
    IEEE ACCESS, 2024, 12 : 176124 - 176135
  • [5] Spacecraft Time-Series Anomaly Detection Using Transfer Learning
    Baireddy, Sriram
    Desai, Sundip R.
    Mathieson, James L.
    Foster, Richard H.
    Chan, Moses W.
    Comer, Mary L.
    Delp, Edward J.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1951 - 1960
  • [6] Anomaly Detection of Breast Cancer Using Deep Learning
    Alloqmani, Ahad
    Abushark, Yoosef B.
    Khan, Asif Irshad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 10977 - 11002
  • [7] Using Deep Learning for Anomaly Detection in Autonomous Systems
    Jha, Nikhil Kumar
    von Enzberg, Sebastian
    Hillebrand, Michael
    ERCIM NEWS, 2020, (122): : 47 - 48
  • [8] Anomaly Detection of Breast Cancer Using Deep Learning
    Ahad Alloqmani
    Yoosef B. Abushark
    Asif Irshad Khan
    Arabian Journal for Science and Engineering, 2023, 48 : 10977 - 11002
  • [9] Hyperspectral Anomaly Detection Using Deep Learning: A Review
    Hu, Xing
    Xie, Chun
    Fan, Zhe
    Duan, Qianqian
    Zhang, Dawei
    Jiang, Linhua
    Wei, Xian
    Hong, Danfeng
    Li, Guoqiang
    Zeng, Xinhua
    Chen, Wenming
    Wu, Dongfang
    Chanussot, Jocelyn
    REMOTE SENSING, 2022, 14 (09)
  • [10] A review on anomaly detection techniques using deep learning
    NOMURA Y.
    Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69 (09) : 650 - 656