SADDLE: Spacecraft Anomaly Detection using Deep Learning

被引:0
|
作者
Srivastava, Ankit [1 ]
Badal, Neeraj [2 ]
Manoj, B. S. [1 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Av, Thiruvananthapuram, Kerala, India
[2] Space Applicat Ctr SAC, Signal & Image Proc Area SIPA, Ahmadabad, Gujarat, India
关键词
Spacecraft Anomaly; Anomaly Detection; Data sequences; Transformer;
D O I
10.1109/SPACE63117.2024.10667898
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Efficiently detecting anomalies in spacecraft data poses a significant challenge in modern space missions. We introduce Spacecraft Anomaly Detection using Deep Learning (SADDLE), a novel transformer network-based model tailored for spacecraft anomaly detection. SADDLE leverages an attention-based encoder to analyze telemetry data, capturing broader temporal trends critical for anomaly identification. It utilizes self-conditioning for robust feature extraction across multiple telemetry modalities. Additionally, SADDLE leverages Meta Gradient Descent to adapt faster to spacecraft data characteristics, simultaneously enabling effective training with limited anomaly examples. Extensive evaluations conducted on spacecraft datasets demonstrate that SADDLE outperforms all existing methods while significantly reducing training time.
引用
收藏
页码:128 / 131
页数:4
相关论文
共 50 条
  • [31] Anomaly Detection in Satellite Power System using Deep Learning
    Preetha, S. B. Kavya
    Sai, Jalakam Venu Madhava
    Raj, V. Sowbaranic
    Sekhar, M. Jayan
    Lavanya, R.
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [32] Anomaly Detection on Bridges Using Deep Learning With Partial Training
    Santos-Vila, Ivan
    Soto, Ricardo
    Vega, Emanuel
    Pena Fritz, Alvaro
    Crawford, Broderick
    IEEE ACCESS, 2024, 12 : 116530 - 116545
  • [33] Vehicle Trajectory Reconstruction and Anomaly Detection Using Deep Learning
    Huang S.-C.
    Shao C.-F.
    Li J.
    Zhang X.-Y.
    Qian J.-P.
    Shao, Chun-Fu (cfshao@bjtu.edu.cn), 1600, Science Press (21): : 47 - 54
  • [34] An efficient system for anomaly detection using deep learning classifier
    A. R. Revathi
    Dhananjay Kumar
    Signal, Image and Video Processing, 2017, 11 : 291 - 299
  • [35] Anomaly Detection and Classification using Distributed Tracing and Deep Learning
    Nedelkoski, Sasho
    Cardoso, Jorge
    Kao, Odej
    2019 19TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2019, : 241 - 250
  • [36] Automated Anomaly Detection in Histology Images using Deep Learning
    Shelton, Lillie
    Soans, Rajath
    Shah, Tosha
    Forest, Thomas
    Janardhan, Kyathanahalli
    Napolitano, Michael
    Gonzalez, Raymond
    Carlson, Grady
    Shah, Jyoti K.
    Chen, Antong
    DIGITAL AND COMPUTATIONAL PATHOLOGY, MEDICAL IMAGING 2024, 2024, 12933
  • [37] An efficient system for anomaly detection using deep learning classifier
    Revathi, A. R.
    Kumar, Dhananjay
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 291 - 299
  • [38] Deep Active Learning for Anomaly Detection
    Pimentel, Tiago
    Monteiro, Marianne
    Veloso, Adriano
    Ziviani, Nivio
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [39] Deep Learning for Anomaly Detection: A Review
    Pang, Guansong
    Shen, Chunhua
    Cao, Longbing
    Van den Hengel, Anton
    ACM COMPUTING SURVEYS, 2021, 54 (02)
  • [40] Network Anomaly Detection with Deep Learning
    Cekmez, Ugur
    Erdem, Zeki
    Yavuz, Ali Gokhan
    Sahingoz, Ozgur Koray
    Buldu, Ali
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,