SADDLE: Spacecraft Anomaly Detection using Deep Learning

被引:0
|
作者
Srivastava, Ankit [1 ]
Badal, Neeraj [2 ]
Manoj, B. S. [1 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Av, Thiruvananthapuram, Kerala, India
[2] Space Applicat Ctr SAC, Signal & Image Proc Area SIPA, Ahmadabad, Gujarat, India
关键词
Spacecraft Anomaly; Anomaly Detection; Data sequences; Transformer;
D O I
10.1109/SPACE63117.2024.10667898
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Efficiently detecting anomalies in spacecraft data poses a significant challenge in modern space missions. We introduce Spacecraft Anomaly Detection using Deep Learning (SADDLE), a novel transformer network-based model tailored for spacecraft anomaly detection. SADDLE leverages an attention-based encoder to analyze telemetry data, capturing broader temporal trends critical for anomaly identification. It utilizes self-conditioning for robust feature extraction across multiple telemetry modalities. Additionally, SADDLE leverages Meta Gradient Descent to adapt faster to spacecraft data characteristics, simultaneously enabling effective training with limited anomaly examples. Extensive evaluations conducted on spacecraft datasets demonstrate that SADDLE outperforms all existing methods while significantly reducing training time.
引用
收藏
页码:128 / 131
页数:4
相关论文
共 50 条
  • [21] Video Anomaly Detection Using Optimization Based Deep Learning
    Gayal, Baliram Sambhaji
    Patil, Sandip Raosaheb
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 249 - 264
  • [22] Anomaly Detection using Deep Learning based Image Completion
    Haselmann, M.
    Gruber, D. P.
    Tabatabai, P.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1237 - 1242
  • [23] Anomaly Detection Using System Logs: A Deep Learning Approach
    Sinha, Rohit
    Sur, Rittika
    Sharma, Ruchi
    Shrivastava, Avinash K.
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01)
  • [24] Effective Anomaly Detection Using Deep Learning in IoT Systems
    Aversano L.
    Bernardi M.L.
    Cimitile M.
    Pecori R.
    Veltri L.
    Wireless Communications and Mobile Computing, 2021, 2021
  • [25] Real-World Anomaly Detection Using Deep Learning
    Koppikar, Unnati
    Sujatha, C.
    Patil, Prakashgoud
    Mudenagudi, Uma
    INTELLIGENT COMPUTING AND COMMUNICATION, ICICC 2019, 2020, 1034 : 333 - 342
  • [26] Anomaly Detection in a Crowd Using a Cascade of Deep Learning Networks
    Qiu, Peng
    Kim, Sumi
    Lee, Jeong-Hyu
    Choi, Jaeho
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, INDIA 2017, 2018, 672 : 596 - 607
  • [27] Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
    Khan, Sardar Waqar
    Hafeez, Qasim
    Khalid, Muhammad Irfan
    Alroobaea, Roobaea
    Hussain, Saddam
    Iqbal, Jawaid
    Almotiri, Jasem
    Ullah, Syed Sajid
    SENSORS, 2022, 22 (17)
  • [28] Anomaly Detection in Electricity Consumption Data using Deep Learning
    Kardi, Mohammad
    AlSkaif, Tarek
    Tekinerdogan, Bedir
    Catalao, Joao P. S.
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [29] IoT Botnet Anomaly Detection Using Unsupervised Deep Learning
    Apostol, Ioana
    Preda, Marius
    Nila, Constantin
    Bica, Ion
    ELECTRONICS, 2021, 10 (16)
  • [30] Using Deep Learning Techniques for Anomaly Detection of Wood Surface
    Kılıç, Kenan
    Özcan, Uğur
    Kılıç, Kazım
    Doğru, İbrahim Alper
    Drvna Industrija, 2024, 75 (03) : 275 - 286