SADDLE: Spacecraft Anomaly Detection using Deep Learning

被引:0
|
作者
Srivastava, Ankit [1 ]
Badal, Neeraj [2 ]
Manoj, B. S. [1 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Av, Thiruvananthapuram, Kerala, India
[2] Space Applicat Ctr SAC, Signal & Image Proc Area SIPA, Ahmadabad, Gujarat, India
关键词
Spacecraft Anomaly; Anomaly Detection; Data sequences; Transformer;
D O I
10.1109/SPACE63117.2024.10667898
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Efficiently detecting anomalies in spacecraft data poses a significant challenge in modern space missions. We introduce Spacecraft Anomaly Detection using Deep Learning (SADDLE), a novel transformer network-based model tailored for spacecraft anomaly detection. SADDLE leverages an attention-based encoder to analyze telemetry data, capturing broader temporal trends critical for anomaly identification. It utilizes self-conditioning for robust feature extraction across multiple telemetry modalities. Additionally, SADDLE leverages Meta Gradient Descent to adapt faster to spacecraft data characteristics, simultaneously enabling effective training with limited anomaly examples. Extensive evaluations conducted on spacecraft datasets demonstrate that SADDLE outperforms all existing methods while significantly reducing training time.
引用
收藏
页码:128 / 131
页数:4
相关论文
共 50 条
  • [41] Deep learning for collective anomaly detection
    Ahmed, Mohiuddin
    Pathan, Al-Sakib Khan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (01) : 137 - 145
  • [42] An Anomaly Detection Method for Spacecraft Using ICA Technology
    Xu Binglin
    Li Zhanhuai
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013), 2013, 41 : 50 - 54
  • [43] Anomaly Detection in Renewable Energy Big Data Using Deep Learning
    Katamoura, Suzan MohammadAli
    Aksoy, Mehmet Sabih
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2023, 19 (01)
  • [44] Anomaly Detection Using Deep Learning Respecting the Resources on Board a CubeSat
    Horne, Ross
    Mauw, Sjouke
    Mizera, Andrzej
    Stemper, Andre
    Thoemel, Jan
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2023, : 859 - 872
  • [45] Acoustic Anomaly Detection of Machinery using Autoencoder based Deep Learning
    Chinnasamy, Mark Damien
    Sumbwanyambe, Mbuyu
    Hlalele, Tlotlollo Sidwell
    2024 32ND SOUTHERN AFRICAN UNIVERSITIES POWER ENGINEERING CONFERENCE, SAUPEC, 2024, : 212 - 217
  • [46] Applications of Anomaly Detection using Deep Learning on Time Series Data
    Van Quan Nguyen
    Linh Van Ma
    Kim, Jin-young
    Kim, Kwangki
    Kim, Jinsul
    2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH), 2018, : 393 - 396
  • [47] BINet: Multivariate Business Process Anomaly Detection Using Deep Learning
    Nolle, Timo
    Seeliger, Alexander
    Muhlhauser, Max
    BUSINESS PROCESS MANAGEMENT (BPM 2018), 2018, 11080 : 271 - 287
  • [48] Web Application Firewall Based on Anomaly Detection using Deep Learning
    Toprak, Sezer
    Yavuz, Ali Gokhan
    ACTA INFOLOGICA, 2022, 6 (02): : 219 - 244
  • [49] Dynamic Network Anomaly Detection System by Using Deep Learning Techniques
    Lin, Peng
    Ye, Kejiang
    Xu, Cheng-Zhong
    CLOUD COMPUTING - CLOUD 2019, 2019, 11513 : 161 - 176
  • [50] Dental anomaly detection using intraoral photos via deep learning
    Ragodos, Ronilo
    Wang, Tong
    Padilla, Carmencita
    Hecht, Jacqueline T.
    Poletta, Fernando A.
    Orioli, Ieda M.
    Buxo, Carmen J.
    Butali, Azeez
    Valencia-Ramirez, Consuelo
    Restrepo Muneton, Claudia
    Wehby, George L.
    Weinberg, Seth M.
    Marazita, Mary L.
    Moreno Uribe, Lina M.
    Howe, Brian J.
    SCIENTIFIC REPORTS, 2022, 12 (01)