Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states

被引:98
|
作者
Molnar, Andras [1 ]
Schuch, Norbert [2 ]
Verstraete, Frank [3 ,4 ]
Cirac, J. Ignacio [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Rhein Westfal TH Aachen, JARA Inst Quantum Informat, D-52056 Aachen, Germany
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 04期
关键词
QUANTUM; ENTROPY; AREA;
D O I
10.1103/PhysRevB.91.045138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the error of approximating Gibbs states of local quantum spin Hamiltonians on lattices with projected entangled pair states (PEPS) as a function of the bond dimension (D), temperature (beta(-1)), and system size (N). First, we introduce a compression method in which the bond dimension scales as D = e(O(log22 (N/epsilon))) if beta < O (log(2) N). Second, building on the work of Hastings [M.B. Hastings, Phys. Rev. B 73, 085115 (2006)], we derive a polynomial scaling relation, D = (N/epsilon)(O(beta)). This implies that the manifold of PEPS forms an efficient representation of Gibbs states of local quantum Hamiltonians. From those bounds it also follows that ground states can be approximated with D = N-O(log2 N) whenever the density of states only grows polynomially in the system size. All results hold for any spatial dimension of the lattice.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Excitations and the tangent space of projected entangled-pair states
    Vanderstraeten, Laurens
    Marien, Michael
    Verstraete, Frank
    Haegeman, Jutho
    PHYSICAL REVIEW B, 2015, 92 (20):
  • [42] Variational methods for contracting projected entangled-pair states
    Vanderstraeten, Laurens
    Burgelman, Lander
    Ponsioen, Boris
    Van Damme, Maarten
    Vanhecke, Bram
    Corboz, Philippe
    Haegeman, Jutho
    Verstraete, Frank
    PHYSICAL REVIEW B, 2022, 105 (19)
  • [43] Variational optimization with infinite projected entangled-pair states
    Corboz, Philippe
    PHYSICAL REVIEW B, 2016, 94 (03)
  • [44] A practical introduction to tensor networks: Matrix product states and projected entangled pair states
    Orus, Roman
    ANNALS OF PHYSICS, 2014, 349 : 117 - 158
  • [45] Classifying quantum phases using matrix product states and projected entangled pair states
    Schuch, Norbert
    Perez-Garcia, David
    Cirac, Ignacio
    PHYSICAL REVIEW B, 2011, 84 (16):
  • [46] Efficient representation of minimally entangled typical thermal states in two dimensions via projected entangled pair states
    Sinha, Aritra
    Rams, Marek M.
    Dziarmaga, Jacek
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [47] Exponential Decay of Mutual Information for Gibbs states of local Hamiltonians
    Bluhm, Andreas
    Capel, Angela
    Perez-Hernandez, Antonio
    QUANTUM, 2022, 6
  • [48] Accurate simulation for finite projected entangled pair states in two dimensions
    Liu, Wen-Yuan
    Huang, Yi-Zhen
    Gong, Shou-Shu
    Gu, Zheng-Cheng
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [49] Exact projected entangled pair ground states with topological Euler invariant
    Wahl, Thorsten B.
    Jankowski, Wojciech J.
    Bouhon, Adrien
    Chaudhary, Gaurav
    Slager, Robert-Jan
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [50] Assessing the accuracy of projected entangled-pair states on infinite lattices
    Bauer, B.
    Vidal, G.
    Troyer, M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,