Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states

被引:98
|
作者
Molnar, Andras [1 ]
Schuch, Norbert [2 ]
Verstraete, Frank [3 ,4 ]
Cirac, J. Ignacio [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Rhein Westfal TH Aachen, JARA Inst Quantum Informat, D-52056 Aachen, Germany
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 04期
关键词
QUANTUM; ENTROPY; AREA;
D O I
10.1103/PhysRevB.91.045138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the error of approximating Gibbs states of local quantum spin Hamiltonians on lattices with projected entangled pair states (PEPS) as a function of the bond dimension (D), temperature (beta(-1)), and system size (N). First, we introduce a compression method in which the bond dimension scales as D = e(O(log22 (N/epsilon))) if beta < O (log(2) N). Second, building on the work of Hastings [M.B. Hastings, Phys. Rev. B 73, 085115 (2006)], we derive a polynomial scaling relation, D = (N/epsilon)(O(beta)). This implies that the manifold of PEPS forms an efficient representation of Gibbs states of local quantum Hamiltonians. From those bounds it also follows that ground states can be approximated with D = N-O(log2 N) whenever the density of states only grows polynomially in the system size. All results hold for any spatial dimension of the lattice.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Fermionic projected entangled pair states at finite temperature
    Czarnik, Piotr
    Dziarmaga, Jacek
    PHYSICAL REVIEW B, 2014, 90 (03)
  • [22] Sequential Generation of Projected Entangled-Pair States
    Wei, Zhi-Yuan
    Malz, Daniel
    Cirac, J. Ignacio
    PHYSICAL REVIEW LETTERS, 2022, 128 (01)
  • [23] Finite projected entangled pair states for the Hubbard model
    Scheb, M.
    Noack, R. M.
    PHYSICAL REVIEW B, 2023, 107 (16)
  • [24] Scaling Hypothesis for Projected Entangled-Pair States
    Vanhecke, Bram
    Hasik, Juraj
    Verstraete, Frank
    Vanderstraeten, Laurens
    PHYSICAL REVIEW LETTERS, 2022, 129 (20)
  • [25] Mathematical open problems in projected entangled pair states
    Juan Ignacio Cirac
    José Garre-Rubio
    David Pérez-García
    Revista Matemática Complutense, 2019, 32 : 579 - 599
  • [26] Fermionic implementation of projected entangled pair states algorithm
    Pizorn, Iztok
    Verstraete, Frank
    PHYSICAL REVIEW B, 2010, 81 (24):
  • [27] Mathematical open problems in projected entangled pair states
    Cirac, Juan Ignacio
    Garre-Rubio, Jose
    Perez-Garcia, David
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (03): : 579 - 599
  • [28] Matrix product states and projected entangled pair states: Concepts, symmetries, theorems
    Cirac, J. Ignacio
    Perez-Garcia, David
    Schuch, Norbert
    Verstraete, Frank
    REVIEWS OF MODERN PHYSICS, 2021, 93 (04)
  • [29] Projected Entangled-Pair States Can Describe Chiral Topological States
    Wahl, T. B.
    Tu, H. -H.
    Schuch, N.
    Cirac, J. I.
    PHYSICAL REVIEW LETTERS, 2013, 111 (23)
  • [30] Local Hamiltonians for maximally multipartite-entangled states
    Facchi, P.
    Florio, G.
    Pascazio, S.
    Pepe, F.
    PHYSICAL REVIEW A, 2010, 82 (04):