Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states

被引:98
|
作者
Molnar, Andras [1 ]
Schuch, Norbert [2 ]
Verstraete, Frank [3 ,4 ]
Cirac, J. Ignacio [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Rhein Westfal TH Aachen, JARA Inst Quantum Informat, D-52056 Aachen, Germany
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 04期
关键词
QUANTUM; ENTROPY; AREA;
D O I
10.1103/PhysRevB.91.045138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the error of approximating Gibbs states of local quantum spin Hamiltonians on lattices with projected entangled pair states (PEPS) as a function of the bond dimension (D), temperature (beta(-1)), and system size (N). First, we introduce a compression method in which the bond dimension scales as D = e(O(log22 (N/epsilon))) if beta < O (log(2) N). Second, building on the work of Hastings [M.B. Hastings, Phys. Rev. B 73, 085115 (2006)], we derive a polynomial scaling relation, D = (N/epsilon)(O(beta)). This implies that the manifold of PEPS forms an efficient representation of Gibbs states of local quantum Hamiltonians. From those bounds it also follows that ground states can be approximated with D = N-O(log2 N) whenever the density of states only grows polynomially in the system size. All results hold for any spatial dimension of the lattice.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Preparing topological projected entangled pair states on a quantum computer
    Schwarz, Martin
    Temme, Kristan
    Verstraete, Frank
    Perez-Garcia, David
    Cubitt, Toby S.
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [32] Projected Entangled Pair States: Fundamental Analytical and Numerical Limitations
    Scarpa, G.
    Molnar, A.
    Ge, Y.
    Garcia-Ripoll, J. J.
    Schuch, N.
    Perez-Garcia, D.
    Iblisdir, S.
    PHYSICAL REVIEW LETTERS, 2020, 125 (21)
  • [33] Automatic differentiation applied to excitations with projected entangled pair states
    Ponsioen, Boris
    Assaad, Fakher F.
    Corboz, Philippe
    SCIPOST PHYSICS, 2022, 12 (01):
  • [34] Spectral functions with infinite projected entangled-pair states
    Espinoza, Juan Diego Arias
    Corboz, Philippe
    PHYSICAL REVIEW B, 2024, 110 (09)
  • [35] Simulating excitation spectra with projected entangled-pair states
    Vanderstraeten, Laurens
    Haegeman, Jutho
    Verstraete, Frank
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [36] Symmetries and boundary theories for chiral projected entangled pair states
    Wahl, Thorsten B.
    Hassler, Stefan T.
    Tu, Hong-Hao
    Cirac, J. Ignacio
    Schuch, Norbert
    PHYSICAL REVIEW B, 2014, 90 (11)
  • [37] Variational approach to projected entangled pair states at finite temperature
    Czarnik, Piotr
    Dziarmaga, Jacek
    PHYSICAL REVIEW B, 2015, 92 (03)
  • [38] Normal projected entangled pair states generating the same state
    Molnar, Andras
    Garre-Rubio, Jose
    Perez-Garcia, David
    Schuch, Norbert
    Cirac, J. Ignacio
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [39] Chiral topological spin liquids with projected entangled pair states
    Poilblanc, Didier
    Cirac, J. Ignacio
    Schuch, Norbert
    PHYSICAL REVIEW B, 2015, 91 (22)
  • [40] Fermionic projected entangled-pair states and topological phases
    Bultinck, Nick
    Williamson, Dominic J.
    Haegeman, Jutho
    Verstraete, Frank
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (02)