Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states

被引:98
|
作者
Molnar, Andras [1 ]
Schuch, Norbert [2 ]
Verstraete, Frank [3 ,4 ]
Cirac, J. Ignacio [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Rhein Westfal TH Aachen, JARA Inst Quantum Informat, D-52056 Aachen, Germany
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 04期
关键词
QUANTUM; ENTROPY; AREA;
D O I
10.1103/PhysRevB.91.045138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the error of approximating Gibbs states of local quantum spin Hamiltonians on lattices with projected entangled pair states (PEPS) as a function of the bond dimension (D), temperature (beta(-1)), and system size (N). First, we introduce a compression method in which the bond dimension scales as D = e(O(log22 (N/epsilon))) if beta < O (log(2) N). Second, building on the work of Hastings [M.B. Hastings, Phys. Rev. B 73, 085115 (2006)], we derive a polynomial scaling relation, D = (N/epsilon)(O(beta)). This implies that the manifold of PEPS forms an efficient representation of Gibbs states of local quantum Hamiltonians. From those bounds it also follows that ground states can be approximated with D = N-O(log2 N) whenever the density of states only grows polynomially in the system size. All results hold for any spatial dimension of the lattice.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Approximating local observables on projected entangled pair states
    Schwarz, M.
    Buerschaper, O.
    Eisert, J.
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [2] Rapid Adiabatic Preparation of Injective Projected Entangled Pair States and Gibbs States
    Ge, Yimin
    Molnar, Andras
    Cirac, J. Ignacio
    PHYSICAL REVIEW LETTERS, 2016, 116 (08)
  • [3] Perturbative 2-body parent Hamiltonians for projected entangled pair states
    Brell, Courtney G.
    Bartlett, Stephen D.
    Doherty, Andrew C.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [4] Building projected entangled pair states with a local gauge symmetry
    Zohar, Erez
    Burrello, Michele
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [5] Fermionic projected entangled pair states
    Kraus, Christina V.
    Schuch, Norbert
    Verstraete, Frank
    Cirac, J. Ignacio
    PHYSICAL REVIEW A, 2010, 81 (05):
  • [6] Robustness in projected entangled pair states
    Cirac, J. Ignacio
    Michalakis, Spyridon
    Perez-Garcia, David
    Schuch, Norbert
    PHYSICAL REVIEW B, 2013, 88 (11)
  • [7] Algorithms for finite projected entangled pair states
    Lubasch, Michael
    Cirac, J. Ignacio
    Banuls, Mari-Carmen
    PHYSICAL REVIEW B, 2014, 90 (06)
  • [8] Computational complexity of projected entangled pair states
    Schuch, Norbert
    Wolf, Michael M.
    Verstraete, Frank
    Cirac, J. Ignacio
    PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [9] Supervised learning with projected entangled pair states
    Cheng, Song
    Wang, Lei
    Zhang, Pan
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [10] Projected entangled pair states with flexible geometry
    Patra, Siddhartha
    Singh, Sukhbinder
    Orus, Roman
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):