Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques

被引:15
|
作者
Awadallah, Mohamed A. [1 ]
机构
[1] Zagazig Univ, Dept Elect Power & Machines, Coll Engn, Zagazig 44111, Egypt
关键词
parameter estimation; optimization; three-phase induction machines; particle swarm; genetic algorithms;
D O I
10.1080/15325000801911393
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an optimization-based methodology to estimate the six equivalent circuit parameters of three-phase induction machines from its nameplate data for steady-state analysis. The optimization problem is based on minimizing the normalized square error between the computed performance of the equivalent circuit and that supplied by the manufacturer through the nameplate data. The problem is solved by using two routines that belong to the evolutionary computation family, namely, the particle swarm optimization (PSO) and the genetic algorithm (GA). A comparison between the functioning of the two routines is conducted. The motor performance computed through the PSO/GA parameters is compared to that computed by classical parameters obtained via machine testing, as well as the measured performance. Results show the superiority of the PSO/GA parameter set over the classical one, besides the distinct gain of eliminating the need to carry out lab testing in order to obtain the machine parameters.
引用
收藏
页码:801 / 814
页数:14
相关论文
共 50 条
  • [31] Parameter Evolution for a Particle Swarm Optimization Algorithm
    Zhou, Aimin
    Zhang, Guixu
    Konstantinidis, Andreas
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 33 - +
  • [32] A new memetic algorithm using particle swarm optimization and genetic algorithm
    Soak, Sang-Moon
    Lee, Sang-Wook
    Mahalik, N. P.
    Ahn, Byung-Ha
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2006, 4251 : 122 - 129
  • [33] Modeling and Parameter Estimation of Particle Swarm Optimization Algorithm for Smart Power Grid
    He Tao
    Liang Zhidong
    Ye Xinquan
    Sun Shufeng
    Pang Jihong
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2015, 8 (06): : 229 - 237
  • [34] Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm
    Ma, Jieming
    Man, Ka Lok
    Guan, Sheng-Uei
    Ting, T. O.
    Wong, Prudence W. H.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (03) : 343 - 352
  • [35] Cure kinetic parameter estimation of thermosetting resins with isothermal data by using particle swarm optimization
    Pagano, Rogerio L.
    Calado, Veronica M. A.
    Tavares, Frederico W.
    Biscaia, Evaristo C., Jr.
    EUROPEAN POLYMER JOURNAL, 2008, 44 (08) : 2678 - 2686
  • [36] Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine
    Darabi, Ahmad
    Alfi, Alireza
    Kiumarsi, Bahare
    Modares, Hamidreza
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (01):
  • [37] Parameter Identification of Doubly Fed Induction Generator (DFIG) using Particle Swarm Optimization (PSO) algorithm
    Mohammed, Bakari
    Zohra, A. R. A. M. A. Fatima
    Omar, Ouledali
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (09): : 261 - 266
  • [38] Transformer Parameters Estimation From Nameplate Data Using Evolutionary Programming Techniques
    Mossad, Mohamed I.
    Azab, Mohamed
    Abu-Siada, A.
    IEEE TRANSACTIONS ON POWER DELIVERY, 2014, 29 (05) : 2118 - 2123
  • [39] Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization
    Ojeda, Daniel R. G.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    SIMULATION MODELLING PRACTICE AND THEORY, 2018, 81 : 1 - 10
  • [40] Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization
    Kumar, V.
    Balasubramanian, P.
    FUEL, 2009, 88 (11) : 2171 - 2180