Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques

被引:15
|
作者
Awadallah, Mohamed A. [1 ]
机构
[1] Zagazig Univ, Dept Elect Power & Machines, Coll Engn, Zagazig 44111, Egypt
关键词
parameter estimation; optimization; three-phase induction machines; particle swarm; genetic algorithms;
D O I
10.1080/15325000801911393
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an optimization-based methodology to estimate the six equivalent circuit parameters of three-phase induction machines from its nameplate data for steady-state analysis. The optimization problem is based on minimizing the normalized square error between the computed performance of the equivalent circuit and that supplied by the manufacturer through the nameplate data. The problem is solved by using two routines that belong to the evolutionary computation family, namely, the particle swarm optimization (PSO) and the genetic algorithm (GA). A comparison between the functioning of the two routines is conducted. The motor performance computed through the PSO/GA parameters is compared to that computed by classical parameters obtained via machine testing, as well as the measured performance. Results show the superiority of the PSO/GA parameter set over the classical one, besides the distinct gain of eliminating the need to carry out lab testing in order to obtain the machine parameters.
引用
收藏
页码:801 / 814
页数:14
相关论文
共 50 条
  • [21] Comparison of the parameter estimation methods of surge arresters using modified particle swarm optimization algorithm
    Nafar, M.
    Gharehpetian, G. B.
    Niknam, T.
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2012, 22 (08): : 1146 - 1160
  • [22] Dynamic aerodynamic parameter estimation using a dynamic particle swarm optimization algorithm for rolling airframes
    Ayham Mohamad
    Jalal Karimi
    Alireza Naderi
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [23] Dynamic aerodynamic parameter estimation using a dynamic particle swarm optimization algorithm for rolling airframes
    Mohamad, Ayham
    Karimi, Jalal
    Naderi, Alireza
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [24] Robust Estimation of IIR System's Parameter Using Adaptive Particle Swarm Optimization Algorithm
    Dash, Meera
    Panigrahi, Trilochan
    Sharma, Renu
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 41 - 50
  • [25] Improved particle swarm optimization algorithm using design of experiment and data mining techniques
    Liu, Zhao
    Zhu, Ping
    Chen, Wei
    Yang, Ren-Jye
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2015, 52 (04) : 813 - 826
  • [26] Improved particle swarm optimization algorithm using design of experiment and data mining techniques
    Zhao Liu
    Ping Zhu
    Wei Chen
    Ren-Jye Yang
    Structural and Multidisciplinary Optimization, 2015, 52 : 813 - 826
  • [27] The Induction Motor Parameter Estimation Using Genetic Algorithm
    Fortes, M. Z.
    Ferreira, V. H.
    Coelho, A. P. F.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1273 - 1278
  • [28] Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran
    Assareh, E.
    Behrang, M. A.
    Assari, M. R.
    Ghanbarzadeh, A.
    ENERGY, 2010, 35 (12) : 5223 - 5229
  • [29] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [30] Parameter analysis of particle swarm optimization algorithm
    Yao, Yao-Zhong
    Xu, Yu-Ru
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2007, 28 (11): : 1242 - 1246