Parameter identification of a cage induction motor using particle swarm optimization

被引:13
|
作者
Nikranajbar, A. [1 ]
Ebrahimi, M. K. [1 ]
Wood, A. S. [1 ]
机构
[1] Univ Bradford, Sch Engn, Bradford BD7 1DP, W Yorkshire, England
关键词
particle swarm optimization; induction machine; parameter identification; swarm intelligence; evolutionary algorithms;
D O I
10.1243/09596518JSCE840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The current paper presents an adaptive system identification/parameter estimation algorithm for a three-phase cage induction motor based on particle swarm optimization (PSO). The performance of the proposed algorithm is emphasized by comparing its results with those of the well-known stochastic optimization techniques of genetic algorithm (GA) and simulated annealing ( SA) for the benchmark application with six unknown parameters to identify. The dynamic inertia-weighted PSO algorithm significantly outperformed the GA and SA techniques. The achievement of the presented methodology in confronting a rather complicated non-linear dynamic engineering application underlines the ability of the algorithm to be used for a range of real-world problems, and moreover justifies and motivates the development of more advanced techniques.
引用
收藏
页码:479 / 491
页数:13
相关论文
共 50 条
  • [1] Parameter identification of induction motor based on particle swarm optimization
    Picardi, C.
    Rogano, N.
    2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, : 968 - +
  • [2] Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm
    Emara, Hassan M.
    Elshamy, Wesam
    Bahgat, A.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 2194 - +
  • [3] On line parameter identification of an induction motor, using improved particle swarm optimization
    Chen Guangyi
    Wei, Guo
    Huang Kaisheng
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 745 - +
  • [4] Parameter Identification of DC Motor Drive Systems using Particle Swarm Optimization
    Hafez, Ishaq
    Dhaouadi, Rached
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 832 - 837
  • [5] Application of Simulated Annealing Particle Swarm Optimization Based on Correlation in Parameter Identification of Induction Motor
    Wang, Lei
    Liu, Yongqiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [6] Multi-objective parameter estimation of induction motor using particle swarm optimization
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 302 - 312
  • [7] Marine Asynchronous Propulsion Motor Parameter Identification Using Dynamic Particle Swarm Optimization
    Liu, Siyuan
    Liu, Yancheng
    Wang, Chuan
    Ren, Junjie
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 2211 - 2217
  • [8] Parameter Optimization of PID Controller Based on an Improved Particle Swarm Optimization for the Induction Motor
    Shi, Xia-bo
    Lin, Wei-xing
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 1938 - 1942
  • [9] Parameter Identification of Thermoeletric Modules using Particle Swarm Optimization
    Ojeda G, Daniel R.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 812 - 817
  • [10] Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
    Zhou, Shuai
    Wang, Dazhi
    Ni, Yongliang
    Song, Keling
    Li, Yanming
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 2187 - 2207