Parameter identification of a cage induction motor using particle swarm optimization

被引:13
|
作者
Nikranajbar, A. [1 ]
Ebrahimi, M. K. [1 ]
Wood, A. S. [1 ]
机构
[1] Univ Bradford, Sch Engn, Bradford BD7 1DP, W Yorkshire, England
关键词
particle swarm optimization; induction machine; parameter identification; swarm intelligence; evolutionary algorithms;
D O I
10.1243/09596518JSCE840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The current paper presents an adaptive system identification/parameter estimation algorithm for a three-phase cage induction motor based on particle swarm optimization (PSO). The performance of the proposed algorithm is emphasized by comparing its results with those of the well-known stochastic optimization techniques of genetic algorithm (GA) and simulated annealing ( SA) for the benchmark application with six unknown parameters to identify. The dynamic inertia-weighted PSO algorithm significantly outperformed the GA and SA techniques. The achievement of the presented methodology in confronting a rather complicated non-linear dynamic engineering application underlines the ability of the algorithm to be used for a range of real-world problems, and moreover justifies and motivates the development of more advanced techniques.
引用
收藏
页码:479 / 491
页数:13
相关论文
共 50 条
  • [31] Multi-parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization
    Liu X.-P.
    Hu W.-P.
    Zou Y.-L.
    Zhang Y.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2020, 24 (07): : 112 - 120
  • [32] Parameter identification of permanent magnet synchronous motor based on modified- fuzzy particle swarm optimization
    Zhou, Shuai
    Wang, Dazhi
    Li, Ye
    ENERGY REPORTS, 2023, 9 : 873 - 879
  • [33] Parameter identification of permanent magnet synchronous motor based on modified- fuzzy particle swarm optimization
    Zhou, Shuai
    Wang, Dazhi
    ENERGY REPORTS, 2023, 9 : 873 - 879
  • [34] Parameter Identification of a Fractional Order Dynamical System Using Particle Swarm Optimization Technique
    Maiti, Deepyaman
    Janarthanan, R.
    Konar, Amit
    2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 534 - +
  • [35] Model Parameter Identification for Lithium Batteries Using the Coevolutionary Particle Swarm Optimization Method
    Yu, Zhihao
    Xiao, Linjing
    Li, Hongyu
    Zhu, Xuli
    Huai, Ruituo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (07) : 5690 - 5700
  • [36] A new method for identifying broken rotor bars in squirrel cage induction motor based on particle swarm optimization method
    Rashtchi, V.
    Aghmasheh, R.
    World Academy of Science, Engineering and Technology, 2010, 43 : 694 - 698
  • [37] A PARAMETER IDENTIFICATION APPROACH OF A PEM FUEL CELL STACK USING PARTICLE SWARM OPTIMIZATION
    Salim, Reem I.
    Noura, Hassan
    Fardoun, Abbas
    PROCEEDINGS OF THE ASME 11TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2013, 2014,
  • [38] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638
  • [39] Using Particle Swarm Optimization for Fuzzy Antecedent Parameter Identification in Active Suspension Control
    Herrera, Isabel Elena
    Mandow, Anthony
    Garcia-Cerezo, Alfonso
    2018 26TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2018, : 320 - 325
  • [40] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484