Non-abelian Mellin transformations and applications

被引:0
|
作者
Liu, Yongqiang [1 ]
Maxim, Laurentiu [2 ]
Wang, Botong [2 ]
机构
[1] Univ Sci & Technol China, Inst Geometry & Phys, 96 Jinzhai Rd, Hefei 230026, Peoples R China
[2] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
关键词
14F35; 14F45; 14F06; 32S55; 32S60; PERVERSE SHEAVES; VARIETIES;
D O I
10.1017/fms.2022.91
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study non-abelian versions of the Mellin transformations, originally introduced by Gabber-Loeser on complex affine tori. Our main result is a generalisation to the non-abelian context and with arbitrary coefficients of the t-exactness of Gabber-Loeser's Mellin transformation. As an intermediate step, we obtain vanishing results for the Sabbah specialisation functors. Our main application is to construct new examples of duality spaces in the sense of Bieri-Eckmann, generalising results of Denham-Suciu.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Quantum equivalence of σ models related by non-Abelian duality transformations
    Balazs, LK
    Balog, J
    Forgacs, P
    Mohammedi, N
    Palla, L
    Schnittger, J
    PHYSICAL REVIEW D, 1998, 57 (06) : 3585 - 3594
  • [12] The theory of non-Abelian tensor fields: Gauge transformations and curvature
    Akhmedov, E. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 147 (01) : 509 - 523
  • [13] The group structure of non-Abelian NS-NS transformations
    Janssen, Bert
    Marcos-Caballero, Airam
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):
  • [14] The group structure of non-Abelian NS-NS transformations
    Bert Janssen
    Airam Marcos-Caballero
    Journal of High Energy Physics, 2010
  • [15] Canonical non-Abelian dual transformations in supersymmetric field theories
    Curtright, T.
    Zachos, C.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 52 (02):
  • [16] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [17] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290
  • [18] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [19] Addition formulae for non-Abelian theta functions and applications
    González, EG
    Martín, FJP
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 48 (2-3) : 480 - 502
  • [20] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90