Non-abelian Mellin transformations and applications

被引:0
|
作者
Liu, Yongqiang [1 ]
Maxim, Laurentiu [2 ]
Wang, Botong [2 ]
机构
[1] Univ Sci & Technol China, Inst Geometry & Phys, 96 Jinzhai Rd, Hefei 230026, Peoples R China
[2] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
关键词
14F35; 14F45; 14F06; 32S55; 32S60; PERVERSE SHEAVES; VARIETIES;
D O I
10.1017/fms.2022.91
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study non-abelian versions of the Mellin transformations, originally introduced by Gabber-Loeser on complex affine tori. Our main result is a generalisation to the non-abelian context and with arbitrary coefficients of the t-exactness of Gabber-Loeser's Mellin transformation. As an intermediate step, we obtain vanishing results for the Sabbah specialisation functors. Our main application is to construct new examples of duality spaces in the sense of Bieri-Eckmann, generalising results of Denham-Suciu.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Non-Abelian geometry
    Dasgupta, K
    Yin, Z
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) : 313 - 338
  • [42] ON NON-ABELIAN DUALITY
    ALVAREZ, E
    ALVAREZGAUME, L
    LOZANO, Y
    NUCLEAR PHYSICS B, 1994, 424 (01) : 155 - 183
  • [43] Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics
    Yasui, Shigehiro
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW B, 2011, 83 (13):
  • [44] INFINITE NON-ABELIAN GROUPS WITH INVARIANCE CONDITION FOR INFINITE NON-ABELIAN SUBGROUPS
    CHERNIKO.SN
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (06): : 1280 - &
  • [45] THE NON-ABELIAN SOLITONS FOR THE SL(2,C) NON-ABELIAN TODA LATTICE
    POPOWICZ, Z
    INVERSE PROBLEMS, 1987, 3 (02) : 329 - 340
  • [46] MIXED ABELIAN AND NON-ABELIAN BRS TRANSFORMATIONS AND THE OCCURRENCE OF CHERN-SIMON 3-FORMS
    BAULIEU, L
    PHYSICS LETTERS B, 1983, 126 (06) : 455 - 458
  • [47] Non-abelian bosonization in two and three spatial dimensions and applications
    Huang, Yen-Ta
    Lee, Dung-Hai
    NUCLEAR PHYSICS B, 2021, 972
  • [48] NON-ABELIAN HOMOLOGY OF HOM-LIE ALGEBRAS AND APPLICATIONS
    Casas, J. M.
    Khmaladze, E.
    Rego, N. Pacheco
    PROCEEDINGS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2015, 167 : 99 - 106
  • [49] Matrix orthogonal polynomials, non-abelian Toda lattices, and Bäcklund transformations
    Li, Shi-Hao
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (09) : 2071 - 2090
  • [50] A non-abelian Hom-Leibniz tensor product and applications
    Casas, J. M.
    Khmaladze, E.
    Pacheco Rego, N.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06): : 1133 - 1152