Addition formulae for non-Abelian theta functions and applications

被引:3
|
作者
González, EG [1 ]
Martín, FJP [1 ]
机构
[1] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
关键词
non-Abelian theta functions; generalized theta divisor; moduli spaces of vector bundles on curves; Szego kernel;
D O I
10.1016/S0393-0440(03)00057-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper generalizes for non-Abelian theta functions a number of formulae valid for theta functions of Jacobian varieties. The addition formula, the relation with the Szego kernel and with the multicomponent KP hierarchy and the behavior under cyclic coverings are given. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:480 / 502
页数:23
相关论文
共 50 条
  • [1] The level-rank duality for non-abelian theta functions
    Marian, Alina
    Oprea, Dragos
    INVENTIONES MATHEMATICAE, 2007, 168 (02) : 225 - 247
  • [2] The level-rank duality for non-abelian theta functions
    Alina Marian
    Dragos Oprea
    Inventiones mathematicae, 2007, 168 : 225 - 247
  • [3] Generalized addition formulae for theta functions
    González, EG
    González-Martínez, C
    Geometry of Riemann Surfaces and Abelian Varieties, 2006, 397 : 89 - 104
  • [4] Pocket formulae for non-Abelian discrete anomaly freedom
    Talbert, Jim
    PHYSICS LETTERS B, 2018, 786 : 426 - 431
  • [5] Addition formulae for Abelian functions associated with specialized curves
    Eilbeck, J. C.
    Matsutani, S.
    Onishi, Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1939): : 1245 - 1263
  • [6] Rings of functions on non-abelian groups
    Maxson, C. J.
    ALGEBRA & DISCRETE MATHEMATICS, 2009, (01): : 59 - 73
  • [7] Non-abelian Mellin transformations and applications
    Liu, Yongqiang
    Maxim, Laurentiu
    Wang, Botong
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [8] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [9] GREENS FUNCTIONS FOR NON-ABELIAN GAUGE FIELDS
    SAKAMOTO, J
    SATO, A
    PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (06): : 1946 - 1952
  • [10] Non-abelian zeta functions for function fields
    Weng, L
    AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (05) : 973 - 1017