Addition formulae for non-Abelian theta functions and applications

被引:3
|
作者
González, EG [1 ]
Martín, FJP [1 ]
机构
[1] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
关键词
non-Abelian theta functions; generalized theta divisor; moduli spaces of vector bundles on curves; Szego kernel;
D O I
10.1016/S0393-0440(03)00057-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper generalizes for non-Abelian theta functions a number of formulae valid for theta functions of Jacobian varieties. The addition formula, the relation with the Szego kernel and with the multicomponent KP hierarchy and the behavior under cyclic coverings are given. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:480 / 502
页数:23
相关论文
共 50 条
  • [21] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [22] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [23] THE VACUUM THETA-ANGLE IS ZERO IN NON-ABELIAN GAUGE-THEORIES
    KHOZE, VV
    PHYSICS LETTERS B, 1994, 328 (3-4) : 387 - 391
  • [24] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [25] Non-Abelian supertubes
    Fernandez-Melgarejo, Jose J.
    Park, Minkyu
    Shigemori, Masaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [26] Inverse ambiguous functions on some finite non-abelian groups
    David Schmitz
    Katherine Gallagher
    Aequationes mathematicae, 2018, 92 : 963 - 973
  • [27] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [28] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418
  • [29] Non-Abelian antibrackets
    Alfaro, J
    Damgaard, PH
    PHYSICS LETTERS B, 1996, 369 (3-4) : 289 - 294
  • [30] Non-abelian ramification
    Pongerard, P
    Wagschal, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01): : 51 - 88