Addition formulae for non-Abelian theta functions and applications

被引:3
|
作者
González, EG [1 ]
Martín, FJP [1 ]
机构
[1] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
关键词
non-Abelian theta functions; generalized theta divisor; moduli spaces of vector bundles on curves; Szego kernel;
D O I
10.1016/S0393-0440(03)00057-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper generalizes for non-Abelian theta functions a number of formulae valid for theta functions of Jacobian varieties. The addition formula, the relation with the Szego kernel and with the multicomponent KP hierarchy and the behavior under cyclic coverings are given. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:480 / 502
页数:23
相关论文
共 50 条
  • [31] Non-abelian monopoles
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Murayama, H
    NUCLEAR PHYSICS B, 2004, 701 (1-2) : 207 - 246
  • [32] Non-abelian ramification
    Wagschal, C
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 115 - +
  • [33] NON-ABELIAN ORBIFOLDS
    INOUE, K
    SAKAMOTO, M
    TAKANO, H
    PROGRESS OF THEORETICAL PHYSICS, 1987, 78 (04): : 908 - 922
  • [34] LARGE SIEVE FOR A CLASS OF NON-ABELIAN L-FUNCTIONS
    GOLDFELD, M
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (01) : 39 - 49
  • [35] Inverse ambiguous functions on some finite non-abelian groups
    Schmitz, David
    Gallagher, Katherine
    AEQUATIONES MATHEMATICAE, 2018, 92 (05) : 963 - 973
  • [36] Non-Abelian supertubes
    José J. Fernández-Melgarejo
    Minkyu Park
    Masaki Shigemori
    Journal of High Energy Physics, 2017
  • [37] Non-Abelian eikonals
    Fried, HM
    Gabellini, Y
    PHYSICAL REVIEW D, 1997, 55 (04): : 2430 - 2440
  • [38] On non-Abelian holonomies
    Alfaro, J
    Morales-Técotl, HA
    Reyes, M
    Urrutia, LF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (48): : 12097 - 12107
  • [39] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 808 - 813
  • [40] Non-Abelian firewall
    Singleton, Douglas
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2020, 29 (14):