Non-abelian Mellin transformations and applications

被引:0
|
作者
Liu, Yongqiang [1 ]
Maxim, Laurentiu [2 ]
Wang, Botong [2 ]
机构
[1] Univ Sci & Technol China, Inst Geometry & Phys, 96 Jinzhai Rd, Hefei 230026, Peoples R China
[2] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
关键词
14F35; 14F45; 14F06; 32S55; 32S60; PERVERSE SHEAVES; VARIETIES;
D O I
10.1017/fms.2022.91
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study non-abelian versions of the Mellin transformations, originally introduced by Gabber-Loeser on complex affine tori. Our main result is a generalisation to the non-abelian context and with arbitrary coefficients of the t-exactness of Gabber-Loeser's Mellin transformation. As an intermediate step, we obtain vanishing results for the Sabbah specialisation functors. Our main application is to construct new examples of duality spaces in the sense of Bieri-Eckmann, generalising results of Denham-Suciu.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] DUALITY TRANSFORMATIONS OF ABELIAN AND NON-ABELIAN GAUGE FIELDS
    DESER, S
    TEITELBOIM, C
    PHYSICAL REVIEW D, 1976, 13 (06): : 1592 - 1597
  • [2] NON-ABELIAN DUALITY AND CANONICAL-TRANSFORMATIONS
    LOZANO, Y
    PHYSICS LETTERS B, 1995, 355 (1-2) : 165 - 170
  • [3] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [4] PROPAGATOR GAUGE TRANSFORMATIONS FOR NON-ABELIAN GAUGE FIELDS
    MILLS, R
    PHYSICAL REVIEW D, 1971, 3 (12): : 2969 - &
  • [5] Gauge transformations of the non-Abelian two-form
    Lahiri, A
    MODERN PHYSICS LETTERS A, 2002, 17 (25) : 1643 - 1650
  • [6] Fresh look at the Abelian and non-Abelian Landau-Khalatnikov-Fradkin transformations
    De Meerleer, T.
    Dudal, D.
    Sorella, S. P.
    Dall'Olio, P.
    Bashir, A.
    PHYSICAL REVIEW D, 2018, 97 (07)
  • [7] Non-Abelian Gravitoelectromagnetism and Applications at Finite Temperature
    Santos, A. F.
    Ramos, J.
    Khanna, Faqir C.
    ADVANCES IN HIGH ENERGY PHYSICS, 2020, 2020
  • [8] Non-Abelian adiabatic geometric transformations in a cold strontium gas
    F. Leroux
    K. Pandey
    R. Rehbi
    F. Chevy
    C. Miniatura
    B. Grémaud
    D. Wilkowski
    Nature Communications, 9
  • [9] The theory of non-Abelian tensor fields: Gauge transformations and curvature
    E. T. Akhmedov
    Theoretical and Mathematical Physics, 2006, 147 : 509 - 523
  • [10] Non-Abelian adiabatic geometric transformations in a cold strontium gas
    Leroux, F.
    Pandey, K.
    Rehbi, R.
    Chevy, F.
    Miniatura, C.
    Gremaud, B.
    Wilkowski, D.
    NATURE COMMUNICATIONS, 2018, 9