Incremental projection approach of regularization for inverse problems

被引:5
|
作者
Souopgui, Innocent [1 ]
Ngodock, Hans E. [2 ]
Vidard, Arthur [3 ]
Le Dimet, Francois-Xavier [3 ]
机构
[1] Univ Southern Mississippi, Dept Marine Sci, 1020 Balch Blvd, Stennis Space Ctr, MS 39529 USA
[2] Naval Res Lab, 1009 Balch Blvd, Stennis Space Ctr, MS 39529 USA
[3] Lab Jean Kuntzmann, 51 Rue Maths, F-38400 St Martin Dheres, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2016年 / 74卷 / 02期
关键词
Regularization; Projection; Inverse problems; Motion estimation; ILL-POSED PROBLEMS; COMPUTING OPTICAL-FLOW; THRESHOLDING ALGORITHM; IMAGE MOTION; COMPUTATION;
D O I
10.1007/s00245-015-9315-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
引用
收藏
页码:303 / 324
页数:22
相关论文
共 50 条
  • [21] Iterative regularization for elliptic inverse problems
    Khan, A. A.
    Rouhani, B. D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (06) : 850 - 860
  • [22] Augmented NETT regularization of inverse problems
    Obmann, Daniel
    Linh Nguyen
    Schwab, Johannes
    Haltmeier, Markus
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (10):
  • [23] Modern regularization methods for inverse problems
    Benning, Martin
    Burger, Martin
    ACTA NUMERICA, 2018, 27 : 1 - 111
  • [24] WINDOWED SPECTRAL REGULARIZATION OF INVERSE PROBLEMS
    Chung, Julianne
    Easley, Glenn
    O'Leary, Dianne P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06): : 3175 - 3200
  • [25] REGULARIZATION METHODS FOR LINEAR INVERSE PROBLEMS
    BERTERO, M
    LECTURE NOTES IN MATHEMATICS, 1986, 1225 : 52 - 112
  • [26] Sparsity regularization in inverse problems Preface
    Jin, Bangti
    Maass, Peter
    Scherzer, Otmar
    INVERSE PROBLEMS, 2017, 33 (06)
  • [27] Method of descriptive regularization for the inverse problems
    Morozov, V.A.
    Gol'dman, N.L.
    Malyshev, V.A.
    Inzhenerno-Fizicheskii Zhurnal, 1993, 65 (06): : 695 - 702
  • [28] Inverse problems of generalized projection operators
    Kaasalainen, Mikko
    Lamberg, Lars
    INVERSE PROBLEMS, 2006, 22 (03) : 749 - 769
  • [29] REGULARIZATION OF INVERSE VISUAL PROBLEMS INVOLVING DISCONTINUITIES
    TERZOPOULOS, D
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (04) : 413 - 424
  • [30] Regularization of inverse problems in atmospheric remote sensing
    Doicu, Adrian
    Trautmann, Thomas
    Schreier, Franz
    POLARIMETRIC DETECTION, CHARACTERIZATION, AND REMOTE SENSING, 2010, : 79 - 116