Iterative regularization for elliptic inverse problems

被引:13
|
作者
Khan, A. A.
Rouhani, B. D.
机构
[1] Univ Wisconsin, Dept Math, Rice Lake, WI 54868 USA
[2] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
关键词
inverse problem; parameter identification; variational inequality; regularization; auxiliary problem principle; iterative methods;
D O I
10.1016/j.camwa.2007.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Elliptic inverse problems can be formulated using coefficient-dependent energy least-squares functionals, resulting in a smooth, convex objective functional. A variational inequality emerges as a necessary and sufficient optimality condition. The principle of iterative regularization, when coupled with the auxiliary problem principle, results in a strongly convergent scheme for the solution of elliptic inverse problems. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:850 / 860
页数:11
相关论文
共 50 条
  • [1] An Iterative Regularization Method for a Class of Inverse Boundary Value Problems of Elliptic Type
    Zouyed, Fairouz
    Debbouche, Souheyla
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2020, 16 (01) : 66 - 85
  • [2] A mann iterative regularization method for elliptic Cauchy problems
    Engl, HW
    Leitao, A
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (7-8) : 861 - 884
  • [4] Iterative solvers for Tikhonov regularization of dense inverse problems
    Popa, Constantin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (14) : 3199 - 3208
  • [5] Deep unfolding as iterative regularization for imaging inverse problems
    Cui, Zhuo-Xu
    Zhu, Qingyong
    Cheng, Jing
    Zhang, Bo
    Liang, Dong
    INVERSE PROBLEMS, 2024, 40 (02)
  • [6] Application of iterative regularization for the solution of incorrect inverse problems
    Alifanov, O.M.
    Rumyantsev, S.V.
    Journal of Engineering Physics (English Translation of Inzhenerno-Fizicheskii Zhurnal), 1988, 53 (05): : 1335 - 1342
  • [7] Iterative choices of regularization parameters in linear inverse problems
    Kunisch, K
    Zou, J
    INVERSE PROBLEMS, 1998, 14 (05) : 1247 - 1264
  • [8] On the filtering effect of iterative regularization algorithms for discrete inverse problems
    Cornelio, A.
    Porta, F.
    Prato, M.
    Zanni, L.
    INVERSE PROBLEMS, 2013, 29 (12)
  • [9] Iterative regularization for constrained minimization formulations of nonlinear inverse problems
    Kaltenbacher, Barbara
    Van Huynh, Kha
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (02) : 569 - 611
  • [10] Iterative regularization for constrained minimization formulations of nonlinear inverse problems
    Barbara Kaltenbacher
    Kha Van Huynh
    Computational Optimization and Applications, 2022, 81 : 569 - 611