Iterative regularization for elliptic inverse problems

被引:13
|
作者
Khan, A. A.
Rouhani, B. D.
机构
[1] Univ Wisconsin, Dept Math, Rice Lake, WI 54868 USA
[2] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
关键词
inverse problem; parameter identification; variational inequality; regularization; auxiliary problem principle; iterative methods;
D O I
10.1016/j.camwa.2007.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Elliptic inverse problems can be formulated using coefficient-dependent energy least-squares functionals, resulting in a smooth, convex objective functional. A variational inequality emerges as a necessary and sufficient optimality condition. The principle of iterative regularization, when coupled with the auxiliary problem principle, results in a strongly convergent scheme for the solution of elliptic inverse problems. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:850 / 860
页数:11
相关论文
共 50 条
  • [31] Iterative regularization method in generalized inverse beamforming
    Zhang, Zhifei
    Chen, Si
    Xu, Zhongming
    He, Yansong
    Li, Shu
    JOURNAL OF SOUND AND VIBRATION, 2017, 396 : 108 - 121
  • [32] ITERATIVE REGULARIZATION FOR SEMIINFINITE OPTIMIZATION PROBLEMS
    NOVIKOVA, NM
    CYBERNETICS, 1991, 27 (01): : 115 - 120
  • [33] Iterative regularization for semiinfinite optimization problems
    Novikova, N.M.
    Cybernetics (English Translation of Kibernetika), 1991, 27 (01):
  • [34] The Conditional Stability and an Iterative Regularization Method for a Fractional Inverse Elliptic Problem of Tricomi-Gellerstedt-Keldysh Type
    Djemoui, Sebti
    Meziani, Mohamed S. E.
    Boussetila, Nadjib
    MATHEMATICAL MODELLING AND ANALYSIS, 2024, 29 (01) : 23 - 45
  • [35] Regularization of Inverse Signal Recovery Problems
    Zhilyakov, Evgeny G.
    Belov, Sergei P.
    Oleinik, Ivan I.
    Prokhorenko, Ekaterina I.
    HELIX, 2019, 9 (02): : 4883 - 4889
  • [36] RELAXED REGULARIZATION FOR LINEAR INVERSE PROBLEMS
    Luiken, Nick
    Van Leeuwen, Tristan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S269 - S292
  • [37] Semantic regularization of electromagnetic inverse problems
    Zhang, Hongrui
    Chen, Yanjin
    Wang, Zhuo
    Cui, Tie Jun
    del Hougne, Philipp
    Li, Lianlin
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [38] Augmented NETT regularization of inverse problems
    Obmann, Daniel
    Linh Nguyen
    Schwab, Johannes
    Haltmeier, Markus
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (10):
  • [39] Modern regularization methods for inverse problems
    Benning, Martin
    Burger, Martin
    ACTA NUMERICA, 2018, 27 : 1 - 111
  • [40] WINDOWED SPECTRAL REGULARIZATION OF INVERSE PROBLEMS
    Chung, Julianne
    Easley, Glenn
    O'Leary, Dianne P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06): : 3175 - 3200