Iterative regularization for elliptic inverse problems

被引:13
|
作者
Khan, A. A.
Rouhani, B. D.
机构
[1] Univ Wisconsin, Dept Math, Rice Lake, WI 54868 USA
[2] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
关键词
inverse problem; parameter identification; variational inequality; regularization; auxiliary problem principle; iterative methods;
D O I
10.1016/j.camwa.2007.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Elliptic inverse problems can be formulated using coefficient-dependent energy least-squares functionals, resulting in a smooth, convex objective functional. A variational inequality emerges as a necessary and sufficient optimality condition. The principle of iterative regularization, when coupled with the auxiliary problem principle, results in a strongly convergent scheme for the solution of elliptic inverse problems. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:850 / 860
页数:11
相关论文
共 50 条
  • [41] REGULARIZATION METHODS FOR LINEAR INVERSE PROBLEMS
    BERTERO, M
    LECTURE NOTES IN MATHEMATICS, 1986, 1225 : 52 - 112
  • [42] Sparsity regularization in inverse problems Preface
    Jin, Bangti
    Maass, Peter
    Scherzer, Otmar
    INVERSE PROBLEMS, 2017, 33 (06)
  • [43] Method of descriptive regularization for the inverse problems
    Morozov, V.A.
    Gol'dman, N.L.
    Malyshev, V.A.
    Inzhenerno-Fizicheskii Zhurnal, 1993, 65 (06): : 695 - 702
  • [44] Iterative Regularization and Adaptivity for an Electromagnetic Coefficient Inverse Problem
    Malmberg, John Bondestam
    Beilina, Larisa
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [45] Regularization and iterative methods for monotone inverse variational inequalities
    Xue-ping Luo
    Jun Yang
    Optimization Letters, 2014, 8 : 1261 - 1272
  • [46] Regularization and iterative methods for monotone inverse variational inequalities
    Luo, Xue-ping
    Yang, Jun
    OPTIMIZATION LETTERS, 2014, 8 (04) : 1261 - 1272
  • [47] Iterative regularization schemes in inverse scattering by periodic structures
    Hettlich, F
    INVERSE PROBLEMS, 2002, 18 (03) : 701 - 714
  • [48] On approximation of inverse problems for abstract elliptic problems
    Orlovsky, D.
    Piskarev, S.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (08): : 765 - 782
  • [49] The balancing principle for the regularization of elliptic Cauchy problems
    Cao, Hui
    Pereverzev, Sergei V.
    INVERSE PROBLEMS, 2007, 23 (05) : 1943 - 1961
  • [50] ON THE IDENTIFICATION OF COEFFICIENTS OF ELLIPTIC PROBLEMS BY ASYMPTOTIC REGULARIZATION
    HOFFMANN, KH
    SPREKELS, J
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1984, 7 (2-3) : 157 - 177