Incremental projection approach of regularization for inverse problems

被引:5
|
作者
Souopgui, Innocent [1 ]
Ngodock, Hans E. [2 ]
Vidard, Arthur [3 ]
Le Dimet, Francois-Xavier [3 ]
机构
[1] Univ Southern Mississippi, Dept Marine Sci, 1020 Balch Blvd, Stennis Space Ctr, MS 39529 USA
[2] Naval Res Lab, 1009 Balch Blvd, Stennis Space Ctr, MS 39529 USA
[3] Lab Jean Kuntzmann, 51 Rue Maths, F-38400 St Martin Dheres, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2016年 / 74卷 / 02期
关键词
Regularization; Projection; Inverse problems; Motion estimation; ILL-POSED PROBLEMS; COMPUTING OPTICAL-FLOW; THRESHOLDING ALGORITHM; IMAGE MOTION; COMPUTATION;
D O I
10.1007/s00245-015-9315-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
引用
收藏
页码:303 / 324
页数:22
相关论文
共 50 条
  • [31] Low Complexity Regularization of Linear Inverse Problems
    Vaiter, Samuel
    Peyre, Gabriel
    Fadili, Jalal
    SAMPLING THEORY, A RENAISSANCE: COMPRESSIVE SENSING AND OTHER DEVELOPMENTS, 2015, : 103 - 153
  • [32] New POCS algorithms for regularization of inverse problems
    SanchezAvila, C
    FigueirasVidal, AR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (01) : 21 - 39
  • [33] NON-LOCAL REGULARIZATION OF INVERSE PROBLEMS
    Peyre, Gabriel
    Bougleux, Sebastien
    Cohen, Laurent
    INVERSE PROBLEMS AND IMAGING, 2011, 5 (02) : 511 - 530
  • [34] ON THE CHOICE OF THE REGULARIZATION PARAMETER IN NONLINEAR INVERSE PROBLEMS
    Ito, K.
    Kunisch, K.
    SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (03) : 376 - 404
  • [35] Non-local Regularization of Inverse Problems
    Peyre, Gabriel
    Bougleux, Sebstien
    Cohen, Laurent
    COMPUTER VISION - ECCV 2008, PT III, PROCEEDINGS, 2008, 5304 : 57 - 68
  • [36] A Hybrid Regularization Model for Linear Inverse Problems
    Fang, Ximing
    FILOMAT, 2022, 36 (08) : 2739 - 2748
  • [37] DISCONTINUITY PRESERVING REGULARIZATION OF INVERSE VISUAL PROBLEMS
    STEVENSON, RL
    SCHMITZ, BE
    DELP, EJ
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1994, 24 (03): : 455 - 469
  • [38] Minimum variance regularization in linear inverse problems
    Takiya, C
    Helene, O
    do Nascimento, E
    Vanin, VR
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 523 (1-2): : 186 - 192
  • [39] Regularization of inverse magnetostatic problems: possibilities and pitfalls
    Formisano, A
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2005, 24 (03) : 740 - 752
  • [40] On learning the optimal regularization parameter in inverse problems
    Chirinos-Rodriguez, Jonathan
    De Vito, Ernesto
    Molinari, Cesare
    Rosasco, Lorenzo
    Villa, Silvia
    INVERSE PROBLEMS, 2024, 40 (12)