Robust online image processing for high-throughput super-resolution localization microscopy

被引:0
|
作者
Ma, Hongqiang [1 ,2 ]
Xu, Jianquan [1 ,2 ]
Liu, Yang [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Med, Biomed & Opt Imaging Lab, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Bioengn, Biomed & Opt Imaging Lab, Pittsburgh, PA 15213 USA
来源
关键词
super-resolution imaging; high-density emitter localization; high-throughput nanoscopy;
D O I
10.1117/12.2526541
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Super-resolution localization microscopy is a powerful tool to visualize molecular structures at a nanoscale resolution. High-density emitter localization combined with a large field of view and fast imaging frame rate is an effective strategy to achieve a high throughput. But the complex algorithms used to precisely localize the overlapping molecules in dense emitter scenarios limits their usage to mostly small image size. Here we present a computationally simple non-iterative method for high-density emitter localization to enable online image processing that remains robust even for low signals and heterogeneous background. Through numerical simulation and biological experiments, we demonstrate that our approach improves the computation speed by two orders of magnitude on CPU and three orders of magnitude upon GPU acceleration to realize online image processing, without compromising localization accuracy for various image characteristics.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Structured Illumination Microscopy and Super-resolution Image Reconstruction
    Bi, Ying
    Qian, Jiaming
    Cao, Yu
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057
  • [42] Super-resolution enhancement by quantum image scanning microscopy
    Tenne, Ron
    Rossman, Uri
    Rephael, Batel
    Israel, Yonatan
    Krupinski-Ptaszek, Alexander
    Lapkiewicz, Radek
    Silberberg, Yaron
    Oron, Dan
    NATURE PHOTONICS, 2019, 13 (02) : 116 - +
  • [43] Robust PCA-Based Clutter Filtering Method for Super-Resolution Ultrasound Localization Microscopy
    Xu, Kailiang
    Guo, Xingyi
    Sui, Yihui
    Hingot, Vincent
    Couture, Olivier
    Ta, Dean
    Wang, Weiqi
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [44] Super-resolution enhancement by quantum image scanning microscopy
    Ron Tenne
    Uri Rossman
    Batel Rephael
    Yonatan Israel
    Alexander Krupinski-Ptaszek
    Radek Lapkiewicz
    Yaron Silberberg
    Dan Oron
    Nature Photonics, 2019, 13 : 116 - 122
  • [45] Constructing a cost-efficient, high-throughput and high-quality single-molecule localization microscope for super-resolution imaging
    Danial, John S. H.
    Lam, Jeff Y. L.
    Wu, Yunzhao
    Woolley, Matthew
    Dimou, Eleni
    Cheetham, Matthew R.
    Emin, Derya
    Klenerman, David
    NATURE PROTOCOLS, 2022, 17 (11) : 2570 - 2619
  • [46] Constructing a cost-efficient, high-throughput and high-quality single-molecule localization microscope for super-resolution imaging
    John S. H. Danial
    Jeff Y. L. Lam
    Yunzhao Wu
    Matthew Woolley
    Eleni Dimou
    Matthew R. Cheetham
    Derya Emin
    David Klenerman
    Nature Protocols, 2022, 17 : 2570 - 2619
  • [47] Robust super-resolution
    Zomet, A
    Rav-Acha, A
    Peleg, S
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 645 - 650
  • [48] RUNet: A Robust UNet Architecture for Image Super-Resolution
    Hu, Xiaodan
    Naiel, Mohamed A.
    Wong, Alexander
    Lamm, Mark
    Fieguth, Paul
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 505 - 507
  • [49] ROBUST WEIGHTED REGRESSION FOR ULTRASOUND IMAGE SUPER-RESOLUTION
    Sharabati, Walid
    Xi, Bowei
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [50] A FULLY ROBUST FRAMEWORK FOR MAP IMAGE SUPER-RESOLUTION
    Vrigkas, Michalis
    Nikou, Christophoros
    Kondi, Lisimachos P.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2225 - 2228