Robust online image processing for high-throughput super-resolution localization microscopy

被引:0
|
作者
Ma, Hongqiang [1 ,2 ]
Xu, Jianquan [1 ,2 ]
Liu, Yang [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Med, Biomed & Opt Imaging Lab, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Bioengn, Biomed & Opt Imaging Lab, Pittsburgh, PA 15213 USA
来源
关键词
super-resolution imaging; high-density emitter localization; high-throughput nanoscopy;
D O I
10.1117/12.2526541
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Super-resolution localization microscopy is a powerful tool to visualize molecular structures at a nanoscale resolution. High-density emitter localization combined with a large field of view and fast imaging frame rate is an effective strategy to achieve a high throughput. But the complex algorithms used to precisely localize the overlapping molecules in dense emitter scenarios limits their usage to mostly small image size. Here we present a computationally simple non-iterative method for high-density emitter localization to enable online image processing that remains robust even for low signals and heterogeneous background. Through numerical simulation and biological experiments, we demonstrate that our approach improves the computation speed by two orders of magnitude on CPU and three orders of magnitude upon GPU acceleration to realize online image processing, without compromising localization accuracy for various image characteristics.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Aberration characterization and correction in super-resolution localization microscopy
    Zhao Z.
    Zhang Z.
    Huang Z.
    Huang, Zhenli (leo@hust.edu.cn), 1600, Chinese Optical Society (37):
  • [32] Super-resolution spectroscopic microscopy via photon localization
    Dong, Biqin
    Almassalha, Luay
    Urban, Ben E.
    The-Quyen Nguyen
    Khuon, Satya
    Chew, Teng-Leong
    Backman, Vadim
    Sun, Cheng
    Zhang, Hao F.
    NATURE COMMUNICATIONS, 2016, 7
  • [33] Boosting the Localization Precision in Super-Resolution Microscopy: booSTORM
    Heil, Hannah S.
    Schreiber, Benjamin
    Dabauvalle, Marie-Christine
    Krohne, Georg
    Hoefling, Sven
    Kamp, Martin
    Sauer, Markus
    Heinze, Katrin G.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 530A - 530A
  • [34] mmSTORM: Multimodal localization based super-resolution microscopy
    Tamás Gajdos
    Zsófia Cserteg
    Szilárd Szikora
    Tibor Novák
    Bálint Barna H. Kovács
    Gábor Szabó
    József Mihály
    Miklós Erdélyi
    Scientific Reports, 9
  • [35] The Development of Microscopy for Super-Resolution: Confocal Microscopy, and Image Scanning Microscopy
    Sheppard, Colin J. R.
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [36] Image stitching algorithm for super-resolution localization microscopy combined with fluorescence noise prior
    Chen, Yanzhu
    Xu, Zhiwang
    Ren, Shijie
    Huang, Zhen-Li
    Wang, Zhengxia
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (09): : 5411 - 5428
  • [37] High throughput spectrally resolved super-resolution fluorescence microscopy with improved photon usage
    Batey, James Ethan
    Kim, Geun Wan
    Yang, Meek
    Heffer, Darby Claire
    Pott, Elric Dion
    Giang, Hannah
    Dong, Bin
    ANALYST, 2024, 149 (10) : 2801 - 2805
  • [38] Super-resolution microscopy
    不详
    NATURE BIOTECHNOLOGY, 2024, 42 (07) : 1026 - 1026
  • [39] Super-Resolution Microscopy
    Gladunova, Kateryna
    2015 INTERNATIONAL YOUNG SCIENTISTS FORUM ON APPLIED PHYSICS (YSF), 2015,
  • [40] A Novel Approach to Image Calibration in Super-Resolution Microscopy
    Schlangen, Isabel
    Houssineau, Jeremie
    Clark, Daniel
    2014 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS 2014), 2014, : 111 - 116