Robust online image processing for high-throughput super-resolution localization microscopy

被引:0
|
作者
Ma, Hongqiang [1 ,2 ]
Xu, Jianquan [1 ,2 ]
Liu, Yang [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Med, Biomed & Opt Imaging Lab, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Bioengn, Biomed & Opt Imaging Lab, Pittsburgh, PA 15213 USA
来源
关键词
super-resolution imaging; high-density emitter localization; high-throughput nanoscopy;
D O I
10.1117/12.2526541
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Super-resolution localization microscopy is a powerful tool to visualize molecular structures at a nanoscale resolution. High-density emitter localization combined with a large field of view and fast imaging frame rate is an effective strategy to achieve a high throughput. But the complex algorithms used to precisely localize the overlapping molecules in dense emitter scenarios limits their usage to mostly small image size. Here we present a computationally simple non-iterative method for high-density emitter localization to enable online image processing that remains robust even for low signals and heterogeneous background. Through numerical simulation and biological experiments, we demonstrate that our approach improves the computation speed by two orders of magnitude on CPU and three orders of magnitude upon GPU acceleration to realize online image processing, without compromising localization accuracy for various image characteristics.
引用
收藏
页数:3
相关论文
共 50 条
  • [11] Three-dimensional super-resolution high-throughput imaging by structured illumination STED microscopy
    Xue, Yi
    So, Peter T. C.
    OPTICS EXPRESS, 2018, 26 (16): : 20920 - 20928
  • [12] Homogeneous multifocal excitation for high-throughput super-resolution imaging
    Dora Mahecic
    Davide Gambarotto
    Kyle M. Douglass
    Denis Fortun
    Niccoló Banterle
    Khalid A. Ibrahim
    Maeva Le Guennec
    Pierre Gönczy
    Virginie Hamel
    Paul Guichard
    Suliana Manley
    Nature Methods, 2020, 17 : 726 - 733
  • [13] Homogeneous multifocal excitation for high-throughput super-resolution imaging
    Mahecic, Dora
    Gambarotto, Davide
    Douglass, Kyle M.
    Fortun, Denis
    Banterle, Niccolo
    Ibrahim, Khalid A.
    Le Guennec, Maeva
    Gonczy, Pierre
    Hamel, Virginie
    Guichard, Paul
    Manley, Suliana
    NATURE METHODS, 2020, 17 (07) : 726 - +
  • [14] Enhanced detection of fluorescence fluctuations for high-throughput super-resolution imaging
    Zhao, Weisong
    Zhao, Shiqun
    Han, Zhenqian
    Ding, Xiangyan
    Hu, Guangwei
    Qu, Liying
    Huang, Yuanyuan
    Wang, Xinwei
    Mao, Heng
    Jiu, Yaming
    Hu, Ying
    Tan, Jiubin
    Ding, Xumin
    Chen, Liangyi
    Guo, Changliang
    Li, Haoyu
    NATURE PHOTONICS, 2023, 17 (09) : 806 - +
  • [15] Enhanced detection of fluorescence fluctuations for high-throughput super-resolution imaging
    Weisong Zhao
    Shiqun Zhao
    Zhenqian Han
    Xiangyan Ding
    Guangwei Hu
    Liying Qu
    Yuanyuan Huang
    Xinwei Wang
    Heng Mao
    Yaming Jiu
    Ying Hu
    Jiubin Tan
    Xumin Ding
    Liangyi Chen
    Changliang Guo
    Haoyu Li
    Nature Photonics, 2023, 17 : 806 - 813
  • [16] Localization Microscopy: High power continuous wave lasers for super-resolution microscopy
    Klatt, Gregor
    Saroglou, Konstantinos
    Kobitski, Andrei
    Nienhaus, G. Ulrich
    PhotonicsViews, 2020, 17 (01): : 27 - 31
  • [17] Deep learning for super-resolution localization microscopy
    Zhou, Tianyang
    Luo, Jianwen
    Liu, Xin
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820
  • [18] Fluorophore localization algorithms for super-resolution microscopy
    Small A.
    Stahlheber S.
    Nature Methods, 2014, 11 (3) : 267 - 279
  • [19] Fluorophore localization algorithms for super-resolution microscopy
    Small, Alex
    Stahlheber, Shane
    NATURE METHODS, 2014, 11 (03) : 267 - 279
  • [20] A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM
    Castello, Marco
    Tortarolo, Giorgio
    Buttafava, Mauro
    Deguchi, Takahiro
    Villa, Federica
    Koho, Sami
    Pesce, Luca
    Oneto, Michele
    Pelicci, Simone
    Lanzano, Luca
    Bianchini, Paolo
    Sheppard, Colin J. R.
    Diaspro, Alberto
    Tosi, Alberto
    Vicidomini, Giuseppe
    NATURE METHODS, 2019, 16 (02) : 175 - +