Quadratic integer programming and the Slope Conjecture

被引:0
|
作者
Garoufalidis, Stavros [1 ]
van der Veen, Roland [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Leiden Univ, Inst Math, Niels Bohrweg 1, Leiden, Netherlands
来源
基金
美国国家科学基金会;
关键词
knot; link; Jones polynomial; Jones slope; quasi-polynomial; pretzel knots; fusion; fusion number of a knot; polytopes; incompressible surfaces; slope; tropicalization; state sums; tight state sums; almost tight state sums; regular ideal octahedron; quadratic integer programming; VOLUME CONJECTURE; BOUNDARY SLOPES; INCOMPRESSIBILITY; INVARIANTS; CURVES; KNOTS; LINKS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Slope Conjecture relates a quantum knot invariant, (the degree of the colored Jones polynomial of a knot) with a classical one (boundary slopes of incompressible surfaces in the knot complement). The degree of the colored Jones polynomial can be computed by a suitable (almost tight) state sum and the solution of a corresponding quadratic integer programming problem. We illustrate this principle for a 2-parameter family of 2-fusion knots. Combined with the results of Dunfield and the first author, this confirms the Slope Conjecture for the 2-fusion knots of one sector.
引用
收藏
页码:907 / 932
页数:26
相关论文
共 50 条
  • [31] Alignment of protein interaction networks by integer quadratic programming
    Li, Zhenping
    Wang, Yong
    Zhang, Shihua
    Zhang, Xiang-Sun
    Chen, Luonan
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 187 - 190
  • [32] An approximation algorithm for indefinite mixed integer quadratic programming
    Del Pia, Alberto
    MATHEMATICAL PROGRAMMING, 2023, 201 (1-2) : 263 - 293
  • [33] Robust Quadratic Programming with Mixed-Integer Uncertainty
    Mittal, Areesh
    Gokalp, Can
    Hanasusanto, Grani A.
    INFORMS JOURNAL ON COMPUTING, 2020, 32 (02) : 201 - 218
  • [34] A semidefinite programming method for integer convex quadratic minimization
    Park, Jaehyun
    Boyd, Stephen
    OPTIMIZATION LETTERS, 2018, 12 (03) : 499 - 518
  • [35] A NUMERICAL METHOD FOR SOLVING QUADRATIC INTEGER PROGRAMMING PROBLEM
    Tat'yankin, V. M.
    Shitselov, A., V
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2019, 12 (03): : 130 - 139
  • [36] New bounds on the unconstrained quadratic integer programming problem
    Halikias, G. D.
    Jaimoukha, I. M.
    Malik, U.
    Gungah, S. K.
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (04) : 543 - 554
  • [37] Integer quadratic fractional programming problems with bounded variables
    Jain, Ekta
    Dahiya, Kalpana
    Verma, Vanita
    ANNALS OF OPERATIONS RESEARCH, 2018, 269 (1-2) : 269 - 295
  • [38] Integer quadratic fractional programming problems with bounded variables
    Ekta Jain
    Kalpana Dahiya
    Vanita Verma
    Annals of Operations Research, 2018, 269 : 269 - 295
  • [39] A semidefinite programming method for integer convex quadratic minimization
    Jaehyun Park
    Stephen Boyd
    Optimization Letters, 2018, 12 : 499 - 518
  • [40] A polynomial case of convex integer quadratic programming problems with box integer constraints
    Chunli Liu
    Jianjun Gao
    Journal of Global Optimization, 2015, 62 : 661 - 674