Quadratic integer programming and the Slope Conjecture

被引:0
|
作者
Garoufalidis, Stavros [1 ]
van der Veen, Roland [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Leiden Univ, Inst Math, Niels Bohrweg 1, Leiden, Netherlands
来源
基金
美国国家科学基金会;
关键词
knot; link; Jones polynomial; Jones slope; quasi-polynomial; pretzel knots; fusion; fusion number of a knot; polytopes; incompressible surfaces; slope; tropicalization; state sums; tight state sums; almost tight state sums; regular ideal octahedron; quadratic integer programming; VOLUME CONJECTURE; BOUNDARY SLOPES; INCOMPRESSIBILITY; INVARIANTS; CURVES; KNOTS; LINKS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Slope Conjecture relates a quantum knot invariant, (the degree of the colored Jones polynomial of a knot) with a classical one (boundary slopes of incompressible surfaces in the knot complement). The degree of the colored Jones polynomial can be computed by a suitable (almost tight) state sum and the solution of a corresponding quadratic integer programming problem. We illustrate this principle for a 2-parameter family of 2-fusion knots. Combined with the results of Dunfield and the first author, this confirms the Slope Conjecture for the 2-fusion knots of one sector.
引用
收藏
页码:907 / 932
页数:26
相关论文
共 50 条
  • [21] Mixed-integer quadratic programming is in NP
    Alberto Del Pia
    Santanu S. Dey
    Marco Molinaro
    Mathematical Programming, 2017, 162 : 225 - 240
  • [22] Extensions on ellipsoid bounds for quadratic integer programming
    Fampa, Marcia
    Pinillos Nieto, Francisco
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 71 (03) : 457 - 482
  • [23] Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach
    X. J. Zheng
    X. L. Sun
    D. Li
    Journal of Optimization Theory and Applications, 2010, 146 : 463 - 489
  • [24] Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach
    Zheng, X. J.
    Sun, X. L.
    Li, D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (02) : 463 - 489
  • [25] Mixed integer programming and quadratic programming formulations for the interval count problem
    Medeiros, Lívia
    Oliveira, Fabiano
    Lucena, Abilio
    Szwarcfiter, Jayme
    Procedia Computer Science, 2023, 223 : 283 - 291
  • [26] Mixed integer programming and quadratic programming formulations for the interval count problem
    Medeiros, Livia
    Oliveira, Fabiano
    Lucena, Abilio
    Szwarefiter, Jayme
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 283 - 291
  • [27] An approximation algorithm for indefinite mixed integer quadratic programming
    Alberto Del Pia
    Mathematical Programming, 2023, 201 : 263 - 293
  • [29] New bounds on the unconstrained quadratic integer programming problem
    G. D. Halikias
    I. M. Jaimoukha
    U. Malik
    S. K. Gungah
    Journal of Global Optimization, 2007, 39 : 543 - 554
  • [30] Reducing the number of variables in integer quadratic programming problem
    Zhou MinJin
    Chen Wei
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (02) : 424 - 436