New bounds on the unconstrained quadratic integer programming problem

被引:0
|
作者
G. D. Halikias
I. M. Jaimoukha
U. Malik
S. K. Gungah
机构
[1] City University,School of Engineering and Mathematical Sciences
[2] Imperial College,Control and Power Group, Department of Electrical and Electronic Engineering
[3] Imperial College,Department of Electrical and Electronic Engineering
来源
关键词
Quadratic integer programming; Semidefinite relaxation; Zonotope; Hyperplane arrangements;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the maximization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma = \max\{x^{T}\!Ax : x\in \{-1, 1\}^n\}$$\end{document} for a given symmetric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in\mathcal{R}^{n\times n}$$\end{document}. It was shown recently, using properties of zonotopes and hyperplane arrangements, that in the special case that A has a small rank, so that A = VVT where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in\mathcal{R}^{n\times m}$$\end{document} with m < n, then there exists a polynomial time algorithm (polynomial in n for a given m) to solve the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max\{x^TV V^Tx : x\in \{-1, 1\}^n\}$$\end{document}. In this paper, we use this result, as well as a spectral decomposition of A to obtain a sequence of non-increasing upper bounds on γ with no constraints on the rank of A. We also give easily computable necessary and sufficient conditions for the absence of a gap between the solution and its upper bound. Finally, we incorporate the semidefinite relaxation upper bound into our scheme and give an illustrative example.
引用
收藏
页码:543 / 554
页数:11
相关论文
共 50 条
  • [1] New bounds on the unconstrained quadratic integer programming problem
    Halikias, G. D.
    Jaimoukha, I. M.
    Malik, U.
    Gungah, S. K.
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (04) : 543 - 554
  • [2] Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem
    Alain Billionnet
    Sourour Elloumi
    Mathematical Programming, 2007, 109 : 55 - 68
  • [3] Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem
    Billionnet, Alain
    Elloumi, Sourour
    MATHEMATICAL PROGRAMMING, 2007, 109 (01) : 55 - 68
  • [4] UNCONSTRAINED QUADRATIC BIVALENT PROGRAMMING PROBLEM
    GULATI, VP
    GUPTA, SK
    MITTAL, AK
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1984, 15 (01) : 121 - 125
  • [5] ELLIPSOID BOUNDS FOR CONVEX QUADRATIC INTEGER PROGRAMMING
    Buchheim, Christoph
    Huebner, Ruth
    Schoebel, Anita
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) : 741 - 769
  • [6] Extensions on ellipsoid bounds for quadratic integer programming
    Marcia Fampa
    Francisco Pinillos Nieto
    Journal of Global Optimization, 2018, 71 : 457 - 482
  • [7] Extensions on ellipsoid bounds for quadratic integer programming
    Fampa, Marcia
    Pinillos Nieto, Francisco
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 71 (03) : 457 - 482
  • [8] The unconstrained binary quadratic programming problem: a survey
    Kochenberger, Gary
    Hao, Jin-Kao
    Glover, Fred
    Lewis, Mark
    Lu, Zhipeng
    Wang, Haibo
    Wang, Yang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (01) : 58 - 81
  • [9] The unconstrained binary quadratic programming problem: a survey
    Gary Kochenberger
    Jin-Kao Hao
    Fred Glover
    Mark Lewis
    Zhipeng Lü
    Haibo Wang
    Yang Wang
    Journal of Combinatorial Optimization, 2014, 28 : 58 - 81
  • [10] Lagrangean decompositions for the unconstrained binary quadratic programming problem
    Mauri, Geraldo Regis
    Nogueira Lorena, Luiz Antonio
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2011, 18 (02) : 257 - 270