New bounds on the unconstrained quadratic integer programming problem

被引:0
|
作者
G. D. Halikias
I. M. Jaimoukha
U. Malik
S. K. Gungah
机构
[1] City University,School of Engineering and Mathematical Sciences
[2] Imperial College,Control and Power Group, Department of Electrical and Electronic Engineering
[3] Imperial College,Department of Electrical and Electronic Engineering
来源
关键词
Quadratic integer programming; Semidefinite relaxation; Zonotope; Hyperplane arrangements;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the maximization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma = \max\{x^{T}\!Ax : x\in \{-1, 1\}^n\}$$\end{document} for a given symmetric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in\mathcal{R}^{n\times n}$$\end{document}. It was shown recently, using properties of zonotopes and hyperplane arrangements, that in the special case that A has a small rank, so that A = VVT where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in\mathcal{R}^{n\times m}$$\end{document} with m < n, then there exists a polynomial time algorithm (polynomial in n for a given m) to solve the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max\{x^TV V^Tx : x\in \{-1, 1\}^n\}$$\end{document}. In this paper, we use this result, as well as a spectral decomposition of A to obtain a sequence of non-increasing upper bounds on γ with no constraints on the rank of A. We also give easily computable necessary and sufficient conditions for the absence of a gap between the solution and its upper bound. Finally, we incorporate the semidefinite relaxation upper bound into our scheme and give an illustrative example.
引用
收藏
页码:543 / 554
页数:11
相关论文
共 50 条
  • [41] On the gap between the quadratic integer programming problem and its semidefinite relaxation
    U. Malik
    I.M. Jaimoukha
    G.D. Halikias
    S.K. Gungah
    Mathematical Programming, 2006, 107 : 505 - 515
  • [42] An algorithm to solve multi-objective integer quadratic programming problem
    Kushwah, Prerna
    Sharma, Vikas
    ANNALS OF OPERATIONS RESEARCH, 2024, 332 (1-3) : 433 - 459
  • [43] Quadratic Assignment Problem as a Linear Zero-One Integer Programming Problem.
    Slominski, Leon
    Archiwum Automatyki i Telemechaniki, 1975, 20 (01): : 89 - 105
  • [44] A NEW APPROACH TO SOLVING OF THE INTEGER PROGRAMMING PROBLEM
    ALIYEV, AA
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1980, (01): : 140 - 146
  • [45] A new branch and bound algorithm for integer quadratic programming problems
    Ma, Xiaohua
    Gao, Yuelin
    Liu, Xia
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1153 - 1164
  • [46] A new algorithm for quadratic integer programming problems with cardinality constraint
    Fenlan Wang
    Liyuan Cao
    Japan Journal of Industrial and Applied Mathematics, 2020, 37 : 449 - 460
  • [47] A new algorithm for quadratic integer programming problems with cardinality constraint
    Wang, Fenlan
    Cao, Liyuan
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2020, 37 (02) : 449 - 460
  • [48] Norm bounds and underestimators for unconstrained polynomial integer minimization
    Sönke Behrends
    Ruth Hübner
    Anita Schöbel
    Mathematical Methods of Operations Research, 2018, 87 : 73 - 107
  • [49] A NEW GLOBAL OPTIMIZATION ALGORITHM FOR MIXED-INTEGER QUADRATICALLY CONSTRAINED QUADRATIC FRACTIONAL PROGRAMMING PROBLEM
    Zhang, Bo
    Gao, Yuelin
    Liu, Xia
    Huang, Xiaoli
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (03): : 784 - 813
  • [50] Norm bounds and underestimators for unconstrained polynomial integer minimization
    Behrends, Sonke
    Huebner, Ruth
    Schoebel, Anita
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2018, 87 (01) : 73 - 107