State-Of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation

被引:13
|
作者
Yu, Chuan-Xiang [1 ]
Xie, Yan-Min [1 ]
Sang, Zhao-Yu [1 ]
Yang, Shi-Ya [1 ]
Huang, Rui [1 ]
机构
[1] Chong Qing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400030, Peoples R China
关键词
lithium-ion batteries; SoC estimation; state-parameter separation; improved dual unscented Kalman filter; MANAGEMENT-SYSTEMS; ONLINE ESTIMATION; PART; PACKS; SOC;
D O I
10.3390/en12214036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State-of-charge estimation and on-line model modification of lithium-ion batteries are more urgently required because of the great impact of the model accuracy on the algorithm performance. This study aims to propose an improved DUKF based on the state-parameter separation. Its characteristics include: (1) State-Of-Charge (SoC) is treated as the only state variable to eliminate the strong correlation between state and parameters. (2) Two filters are ranked to run the parameter modification only when the state estimation has converged. First, the double polarization (DP) model of battery is established, and the parameters of the model are identified at both the pulse discharge and long discharge recovery under Hybrid Pulse Power Characterization (HPPC) test. Second, the implementation of the proposed algorithm is described. Third, combined with the identification results, the study elaborates that it is unreliable to use the predicted voltage error of closed-loop algorithm as the criterion to measure the accuracy of the model, while the output voltage obtained by the open-loop model with dynamic parameters can reflect the real situation. Finally, comparative experiments are designed under HPPC and DST conditions. Results show that the proposed state-parameter separated IAUKF-UKF has higher SoC estimation accuracy and better stability than traditional DUKF.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A Novel State-of-Charge Estimation Method for Lithium-Ion Battery Using GDAformer and Online Correction
    Chen, Wenhe
    Zhou, Hanting
    Mao, Ting
    Cheng, Longsheng
    Xia, Min
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (11) : 13473 - 13485
  • [42] Lithium-Ion Battery State-of-Charge Estimation Using Electrochemical Model with Sensitive Parameters Adjustment
    Wang, Jingrong
    Meng, Jinhao
    Peng, Qiao
    Liu, Tianqi
    Zeng, Xueyang
    Chen, Gang
    Li, Yan
    BATTERIES-BASEL, 2023, 9 (03):
  • [43] Simulation and Implementation of State-of-Charge Estimation of Power Lithium-ion Battery Using Energy Method
    Xia, Bizhong
    Wang, Sa
    Tian, Yong
    Sun, Wei
    Xu, Zhihui
    Zheng, Weiwei
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 948 - +
  • [44] State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Deep Neural Network
    Premkumar, M.
    Sowmya, R.
    Sridhar, S.
    Kumar, C.
    Abbas, Mohamed
    Alqahtani, Malak S.
    Nisar, Kottakkaran Sooppy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 6289 - 6306
  • [45] State-of-charge estimation for lithium-ion battery based on PNGV model and particle filter algorithm
    Geng, Yuanfei
    Pang, Hui
    Liu, Xiaofei
    JOURNAL OF POWER ELECTRONICS, 2022, 22 (07) : 1154 - 1164
  • [46] Online estimation of state-of-charge inconsistency for lithium-ion battery based on SVSF-VBL
    Wang, Lu
    Ma, Jian
    Zhao, Xuan
    Li, Xuebo
    Zhang, Kai
    JOURNAL OF ENERGY STORAGE, 2023, 67
  • [47] A novel fractional order model based state-of-charge estimation method for lithium-ion battery
    Mu, Hao
    Xiong, Rui
    Zheng, Hongfei
    Chang, Yuhua
    Chen, Zeyu
    APPLIED ENERGY, 2017, 207 : 384 - 393
  • [48] State-of-charge estimation for lithium-ion battery based on PNGV model and particle filter algorithm
    Yuanfei Geng
    Hui Pang
    Xiaofei Liu
    Journal of Power Electronics, 2022, 22 : 1154 - 1164
  • [49] The State of Charge Estimation of Lithium-Ion Battery Based on Battery Capacity
    Li, Junhong
    Jiang, Zeyu
    Jiang, Yizhe
    Song, Weicheng
    Gu, Juping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (12)
  • [50] State-of-Charge Estimation of Lithium-ion Battery Based on a Novel Reduced Order Electrochemical Model
    Yuan Chaochun, b
    Wang Bingjian
    Zhang Houzhong
    Long Chen
    Li Huanhuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (01): : 1131 - 1146