State-Of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation

被引:13
|
作者
Yu, Chuan-Xiang [1 ]
Xie, Yan-Min [1 ]
Sang, Zhao-Yu [1 ]
Yang, Shi-Ya [1 ]
Huang, Rui [1 ]
机构
[1] Chong Qing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400030, Peoples R China
关键词
lithium-ion batteries; SoC estimation; state-parameter separation; improved dual unscented Kalman filter; MANAGEMENT-SYSTEMS; ONLINE ESTIMATION; PART; PACKS; SOC;
D O I
10.3390/en12214036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State-of-charge estimation and on-line model modification of lithium-ion batteries are more urgently required because of the great impact of the model accuracy on the algorithm performance. This study aims to propose an improved DUKF based on the state-parameter separation. Its characteristics include: (1) State-Of-Charge (SoC) is treated as the only state variable to eliminate the strong correlation between state and parameters. (2) Two filters are ranked to run the parameter modification only when the state estimation has converged. First, the double polarization (DP) model of battery is established, and the parameters of the model are identified at both the pulse discharge and long discharge recovery under Hybrid Pulse Power Characterization (HPPC) test. Second, the implementation of the proposed algorithm is described. Third, combined with the identification results, the study elaborates that it is unreliable to use the predicted voltage error of closed-loop algorithm as the criterion to measure the accuracy of the model, while the output voltage obtained by the open-loop model with dynamic parameters can reflect the real situation. Finally, comparative experiments are designed under HPPC and DST conditions. Results show that the proposed state-parameter separated IAUKF-UKF has higher SoC estimation accuracy and better stability than traditional DUKF.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer
    Sun, Li
    Li, Guanru
    You, Fengqi
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 131
  • [32] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    ENERGY, 2021, 236
  • [33] An estimation method for the state-of-charge of lithium-ion battery based on PSO-LSTM
    Dang, Meng
    Zhang, Chuanwei
    Yang, Zhi
    Wang, Jianlong
    Li, Yikun
    Huang, Jing
    AIP ADVANCES, 2023, 13 (11)
  • [34] An improved adaptive estimator for state-of-charge estimation of lithium-ion batteries
    Zhang, Wenjie
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    JOURNAL OF POWER SOURCES, 2018, 402 : 422 - 433
  • [35] State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter
    Chen, Cheng
    Xiong, Rui
    Yang, Ruixin
    Shen, Weixiang
    Sun, Fengchun
    JOURNAL OF CLEANER PRODUCTION, 2019, 234 : 1153 - 1164
  • [36] Lithium-ion battery State-of-Charge estimation based on an improved Coulomb-Counting algorithm and uncertainty evaluation
    Mohammadi, Fazel
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [37] Improved Algorithm Based on AEKF for State of Charge Estimation of Lithium-ion Battery
    Yuzhen Jin
    Chenglong Su
    Shichang Luo
    International Journal of Automotive Technology, 2022, 23 : 1003 - 1011
  • [38] Improved Algorithm Based on AEKF for State of Charge Estimation of Lithium-ion Battery
    Jin, Yuzhen
    Su, Chenglong
    Luo, Shichang
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2022, 23 (04) : 1003 - 1011
  • [39] An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
    Guo, Jishu
    Liu, Shulin
    Zhu, Rui
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [40] Estimation of Lithium-ion Battery State of Charge
    Zhang Di
    Ma Yan
    Bai Qing-Wen
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 6256 - 6260