State-Of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation

被引:13
|
作者
Yu, Chuan-Xiang [1 ]
Xie, Yan-Min [1 ]
Sang, Zhao-Yu [1 ]
Yang, Shi-Ya [1 ]
Huang, Rui [1 ]
机构
[1] Chong Qing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400030, Peoples R China
关键词
lithium-ion batteries; SoC estimation; state-parameter separation; improved dual unscented Kalman filter; MANAGEMENT-SYSTEMS; ONLINE ESTIMATION; PART; PACKS; SOC;
D O I
10.3390/en12214036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State-of-charge estimation and on-line model modification of lithium-ion batteries are more urgently required because of the great impact of the model accuracy on the algorithm performance. This study aims to propose an improved DUKF based on the state-parameter separation. Its characteristics include: (1) State-Of-Charge (SoC) is treated as the only state variable to eliminate the strong correlation between state and parameters. (2) Two filters are ranked to run the parameter modification only when the state estimation has converged. First, the double polarization (DP) model of battery is established, and the parameters of the model are identified at both the pulse discharge and long discharge recovery under Hybrid Pulse Power Characterization (HPPC) test. Second, the implementation of the proposed algorithm is described. Third, combined with the identification results, the study elaborates that it is unreliable to use the predicted voltage error of closed-loop algorithm as the criterion to measure the accuracy of the model, while the output voltage obtained by the open-loop model with dynamic parameters can reflect the real situation. Finally, comparative experiments are designed under HPPC and DST conditions. Results show that the proposed state-parameter separated IAUKF-UKF has higher SoC estimation accuracy and better stability than traditional DUKF.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model
    He, Hongwen
    Xiong, Rui
    Zhang, Xiaowei
    Sun, Fengchun
    Fan, JinXin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (04) : 1461 - 1469
  • [22] Model-based state-of-charge estimation approach of the Lithium-ion battery using an improved adaptive particle filter
    Ye, Min
    Guo, Hui
    Xiong, Rui
    Yang, Ruixin
    PROCEEDINGS OF RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID (REM2016), 2016, 103 : 394 - 399
  • [23] Joint State-of-Charge and State-of-Available-Power Estimation Based on the Online Parameter Identification of Lithium-Ion Battery Model
    Zhang, Wenjie
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    Zhang, Yuwang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (04) : 3677 - 3688
  • [24] State-of-charge estimation for lithium-ion batteries based on modified unscented Kalman filter using improved parameter identification
    Yao, Bin
    Cai, Yongxiang
    Liu, Wei
    Wang, Yang
    Chen, Xin
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (05):
  • [25] State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
    Lee, Seongjun
    Kim, Jonghoon
    Lee, Jaemoon
    Cho, B. H.
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 1367 - 1373
  • [26] State-of-charge Estimation of Lithium-ion Polymer Battery Based on Sliding Mode Observer
    Mao Jun
    Zhao Linhui
    Lin Yurong
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 269 - 273
  • [27] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    Energy, 2021, 236
  • [28] An Improved Gated Recurrent Unit Neural Network for State-of-Charge Estimation of Lithium-Ion Battery
    Chen, Jianlong
    Lu, Chenlei
    Chen, Cong
    Cheng, Hangyu
    Xuan, Dongji
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [29] Improved State of Charge Estimation of Lithium-ion Battery cells
    Su, Jiayi
    Strandt, Alia
    Schneider, Susan
    Yaz, Edwin
    Josse, Fabien
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1645 - 1650
  • [30] An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery
    Duan, Wenxian
    Song, Chuanxue
    Peng, Silun
    Xiao, Feng
    Shao, Yulong
    Song, Shixin
    ENERGIES, 2020, 13 (23)