State-Of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation

被引:13
|
作者
Yu, Chuan-Xiang [1 ]
Xie, Yan-Min [1 ]
Sang, Zhao-Yu [1 ]
Yang, Shi-Ya [1 ]
Huang, Rui [1 ]
机构
[1] Chong Qing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400030, Peoples R China
关键词
lithium-ion batteries; SoC estimation; state-parameter separation; improved dual unscented Kalman filter; MANAGEMENT-SYSTEMS; ONLINE ESTIMATION; PART; PACKS; SOC;
D O I
10.3390/en12214036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State-of-charge estimation and on-line model modification of lithium-ion batteries are more urgently required because of the great impact of the model accuracy on the algorithm performance. This study aims to propose an improved DUKF based on the state-parameter separation. Its characteristics include: (1) State-Of-Charge (SoC) is treated as the only state variable to eliminate the strong correlation between state and parameters. (2) Two filters are ranked to run the parameter modification only when the state estimation has converged. First, the double polarization (DP) model of battery is established, and the parameters of the model are identified at both the pulse discharge and long discharge recovery under Hybrid Pulse Power Characterization (HPPC) test. Second, the implementation of the proposed algorithm is described. Third, combined with the identification results, the study elaborates that it is unreliable to use the predicted voltage error of closed-loop algorithm as the criterion to measure the accuracy of the model, while the output voltage obtained by the open-loop model with dynamic parameters can reflect the real situation. Finally, comparative experiments are designed under HPPC and DST conditions. Results show that the proposed state-parameter separated IAUKF-UKF has higher SoC estimation accuracy and better stability than traditional DUKF.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520
  • [2] State-Of-Charge and Parameter Estimation of Lithium-Ion Battery Using Dual Adaptive Filter
    Takegami, Tomoki
    Wada, Toshihiro
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1332 - 1337
  • [3] State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification
    Shi, Na
    Chen, Zewang
    Niu, Mu
    He, Zhijia
    Wang, Youren
    Cui, Jiang
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [4] State-of-Charge Estimation for Lithium-ion Battery Using AUKF and LSSVM
    Meng, Jinhao
    Luo, Guangzhao
    Gao, Fei
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [5] State-of-charge Estimation for Lithium-ion Battery using a Combined Method
    Li, Guidan
    Peng, Kai
    Li, Bin
    JOURNAL OF POWER ELECTRONICS, 2018, 18 (01) : 129 - 136
  • [6] State-of-charge estimation and uncertainty for lithium-ion battery strings
    Truchot, Cyril
    Dubarry, Matthieu
    Liaw, Bor Yann
    APPLIED ENERGY, 2014, 119 : 218 - 227
  • [7] State-of-Charge Estimation of Lithium-Ion Battery Based on an Improved Dual-Polarization Model
    Xie, Shuyu
    Zhang, Xinhui
    Bai, Wenyuan
    Guo, Aiyu
    Li, Wenlong
    Wang, Rui
    ENERGY TECHNOLOGY, 2023, 11 (04)
  • [8] State-of-Charge Estimation of Lithium-Ion Battery Pack Based on Improved RBF Neural Networks
    Zhang, Li
    Zheng, Min
    Du, Dajun
    Li, Yihuan
    Fei, Minrui
    Guo, Yuanjun
    Li, Kang
    COMPLEXITY, 2020, 2020
  • [9] State-of-Charge Estimation of the Lithium-Ion Battery Using Neural Network Based on an Improved Thevenin Circuit Model
    Zhang, Haoliang
    Na, Woonki
    Kim, Jonghoon
    2018 IEEE TRANSPORTATION AND ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2018, : 342 - 346
  • [10] The Lithium-ion Battery State-of-Charge Estimation using Random Forest Regression
    Li, Chuanjiang
    Chen, Zewang
    Cui, Jiang
    Wang, Youren
    Zou, Feng
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 336 - 339