Generalized Wigner functions for damped systems in deformation quantization

被引:0
|
作者
Heng Tai-Hua [1 ]
Jing Si-Cong [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
关键词
Wigner function; damped system; deformation quantization;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantization of damped systems usually gives rise to complex spectra and corresponding resonant states, which do not belong to the Hilbert space. Therefore, the standard form of calculating Wigner function (WF) does not work for these systems. In this paper we show that in order to let WF satisfy a *-genvalue equation for the damped systems, one must modify its standard form slightly, and this modification exactly coincides with the results derived from a *-Exponential expansion in deformation quantization.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [41] Deformation Quantization of a Certain Type of Open Systems
    Becher, Florian
    Neumaier, Nikolai
    Waldmann, Stefan
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 92 (02) : 155 - 180
  • [42] AN INTRODUCTION TO QUANTIZATION OF DISSIPATIVE SYSTEMS. THE DAMPED HARMONIC OSCILLATOR CASE
    Jurkowski, Jacek
    QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 167 - 177
  • [43] Quantization of the damped harmonic oscillator
    Serhan, M.
    Abusini, M.
    Al-Jamel, Ahmed
    El-Nasser, H.
    Rabei, Eqab M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [44] Canonical quantization of classical systems with generalized entropies
    Scarfone, AM
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 55 (02) : 169 - 177
  • [45] ON THE QUANTIZATION OF DAMPED HARMONIC OSCILLATOR
    Ghosh, Subrata
    Choudhuri, Amitava
    Talukdar, B.
    ACTA PHYSICA POLONICA B, 2009, 40 (01): : 49 - 57
  • [46] MAGNETIC CHARGE QUANTIZATION AND GENERALIZED IMPRIMITIVITY SYSTEMS
    JADCZYK, AZ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1975, 14 (03) : 183 - 192
  • [47] MATRIX QUANTIZATION OF DAMPED OSCILLATORS
    ISAYEV, VI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1986, 29 (04): : 103 - 104
  • [48] Connection between two Wigner functions for spin systems
    Chumakov, SM
    Klimov, AB
    Wolf, KB
    PHYSICAL REVIEW A, 2000, 61 (03): : 3
  • [49] Differential form of the correspondence rules for the generalized SU(2) Wigner functions
    Preciado, B.
    Romero, J. L.
    Klimov, A. B.
    PHYSICA SCRIPTA, 2012, T147
  • [50] Symplectic evolution of Wigner functions in Markovian open systems
    Brodier, O
    de Almeida, AMO
    PHYSICAL REVIEW E, 2004, 69 (01) : 11