Generalized Wigner functions for damped systems in deformation quantization

被引:0
|
作者
Heng Tai-Hua [1 ]
Jing Si-Cong [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
关键词
Wigner function; damped system; deformation quantization;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantization of damped systems usually gives rise to complex spectra and corresponding resonant states, which do not belong to the Hilbert space. Therefore, the standard form of calculating Wigner function (WF) does not work for these systems. In this paper we show that in order to let WF satisfy a *-genvalue equation for the damped systems, one must modify its standard form slightly, and this modification exactly coincides with the results derived from a *-Exponential expansion in deformation quantization.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [31] Deformation quantization of linear dissipative systems
    Kupriyanov, VG
    Lyakhovich, SL
    Sharapov, AA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (37): : 8039 - 8051
  • [32] GENERALIZED SUBSTRUCTURE COUPLING PROCEDURE FOR DAMPED SYSTEMS
    CRAIG, RR
    CHUNG, YT
    AIAA JOURNAL, 1982, 20 (03) : 443 - 444
  • [33] From the Weyl quantization of a particle on the circle to number-phase Wigner functions
    Przanowski, Maciej
    Brzykcy, Przemyslaw
    Tosiek, Jaromir
    ANNALS OF PHYSICS, 2014, 351 : 919 - 934
  • [34] On Wigner functions and a damped star product in dissipative phase-space quantum mechanics
    Belchev, B.
    Walton, M. A.
    ANNALS OF PHYSICS, 2009, 324 (03) : 670 - 681
  • [35] Generalized SU(2) covariant Wigner functions and some of their applications
    Klimov, Andrei B.
    Luis Romero, Jose
    de Guise, Hubert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (32)
  • [36] Alternative Hamiltonians and Wigner quantization
    Blasiak, P
    Horzela, A
    Kapuscik, E
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (03) : S245 - S260
  • [37] Alternative Hamiltonians and Wigner quantization
    Horzela, A
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 549 - 552
  • [38] On time asymmetric Wigner quantization
    Horzela, A
    Kapuscik, E
    CHAOS SOLITONS & FRACTALS, 2001, 12 (14-15) : 2801 - 2803
  • [39] Deformation Quantization of a Certain Type of Open Systems
    Florian Becher
    Nikolai Neumaier
    Stefan Waldmann
    Letters in Mathematical Physics, 2010, 92 : 155 - 180
  • [40] Deformation quantization of superintegrable systems and Nambu mechanics
    Curtright, TL
    Zachos, CK
    NEW JOURNAL OF PHYSICS, 2002, 4 : 83.1 - 83.16