Generalized Wigner functions for damped systems in deformation quantization

被引:0
|
作者
Heng Tai-Hua [1 ]
Jing Si-Cong [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
关键词
Wigner function; damped system; deformation quantization;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantization of damped systems usually gives rise to complex spectra and corresponding resonant states, which do not belong to the Hilbert space. Therefore, the standard form of calculating Wigner function (WF) does not work for these systems. In this paper we show that in order to let WF satisfy a *-genvalue equation for the damped systems, one must modify its standard form slightly, and this modification exactly coincides with the results derived from a *-Exponential expansion in deformation quantization.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [21] Deformation quantization of confined systems
    Dias, Nuno Costa
    Prata, Joao Nuno
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (1-2) : 257 - 263
  • [22] Deformation quantization for systems with fermions
    Hirshfeld, AC
    Henselder, P
    ANNALS OF PHYSICS, 2002, 302 (01) : 59 - 77
  • [23] GENERALIZED COHERENT STATES APPROACH TO DEFORMATION QUANTIZATION
    Ghorashi, S. A. A.
    Roknizadeh, R.
    Harouni, M. Bagheri
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (18):
  • [24] Wigner functions and separability for finite systems
    Pittenger, AO
    Rubin, MH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (26): : 6005 - 6036
  • [25] Wigner functions of essentially nonequilibrium systems
    Manjavidze, J
    PHYSICS OF PARTICLES AND NUCLEI, 1999, 30 (01) : 49 - 65
  • [26] GENERALIZED WIGNER FUNCTIONS IN CURVED SPACES - A NEW APPROACH
    KANDRUP, HE
    PHYSICAL REVIEW D, 1988, 37 (08): : 2165 - 2169
  • [27] Wigner Functions for Arbitrary Quantum Systems
    Tilma, Todd
    Everitt, Mark J.
    Samson, John H.
    Munro, William J.
    Nemoto, Kae
    PHYSICAL REVIEW LETTERS, 2016, 117 (18)
  • [28] NOT NECESSARY BUT SUFFICIENT CONDITION FOR THE POSITIVITY OF GENERALIZED WIGNER FUNCTIONS
    MOURGUES, G
    FEIX, MR
    ANDRIEUX, JC
    BERTRAND, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (10) : 2554 - 2557
  • [29] Generalized Wigner function for the analysis of superresolution systems
    Wolf, KB
    Mendlovic, D
    Zalevsky, Z
    APPLIED OPTICS, 1998, 37 (20): : 4374 - 4379
  • [30] GENERALIZED INVERSION OF THE HOCHSCHILD COBOUNDARY OPERATOR AND DEFORMATION QUANTIZATION
    Bratchikov, A. V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (01) : 99 - 106