Study of finite periodic structures using the generalized Mie theory

被引:4
|
作者
Oyhenart, L.
Vigneras, V.
机构
[1] CNRS, Lab Phys Interact Ondes Matiere PIOM, UMR 5501, F-33607 Pessac, France
[2] CNRS, Inst Rech XLIM, UMR 6172, F-87060 Limoges, France
来源
关键词
ELECTROMAGNETIC SCATTERING; SPHERES; MATRIX; WAVES;
D O I
10.1051/epjap:2007088
中图分类号
O59 [应用物理学];
学科分类号
摘要
The generalized Mie theory, also known as the multiple-scattering theory, is an analytical method for solving the scattered field by a collection of spherical scatterers. This is the fastest, most reliable method when the wavelength is close to the structure's dimensions. It is applicable to frequency selective surfaces and is the only method for analyzing finite photonic crystals with a large size. We used simplified structures to compare this method with other techniques.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [1] ANALYSIS OF MULTILAYERED PERIODIC STRUCTURES USING GENERALIZED SCATTERING MATRIX-THEORY
    HALL, RC
    MITTRA, R
    MITZNER, KM
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1988, 36 (04) : 511 - 518
  • [2] Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures
    Stefan Thomas
    Christian Matyssek
    Wolfram Hergert
    Martin Arnold
    Lars Kiewidt
    Mirza Karamehmedović
    Thomas Wriedt
    Plasmonics, 2016, 11 : 865 - 874
  • [3] Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures
    Thomas, Stefan
    Matyssek, Christian
    Hergert, Wolfram
    Arnold, Martin
    Kiewidt, Lars
    Karamehmedovic, Mirza
    Wriedt, Thomas
    PLASMONICS, 2016, 11 (03) : 865 - 874
  • [4] EXPRESSIONS TO COMPUTE THE COEFFICIENTS G(N)-M IN THE GENERALIZED LORENZ-MIE THEORY USING FINITE SERIES
    GOUESBET, G
    GREHAN, G
    MAHEU, B
    JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1988, 19 (01): : 35 - 48
  • [5] Generalized Mie theory of optical forces
    Salandrino, Alessandro
    Fardad, Shima
    Christodoulides, Demetrios N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2012, 29 (04) : 855 - 866
  • [6] Analytical Descriptions of Finite-Energy Bessel Beams in the Generalized Lorenz-Mie Theory
    Ambrosio, Leonardo Andre
    2018 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC), 2018,
  • [7] GENERALIZED LORENZ-MIE THEORY AND APPLICATIONS
    GOUESBET, G
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1994, 11 (01) : 22 - 34
  • [8] Fast Capacitance Extraction for Finite Planar Periodic Structures Using the Generalized Forward-Backward Method
    Lertsirimit, Chatrpol
    Torrungrueng, Danai
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 3597 - 3600
  • [9] Generalized Lorenz-Mie theory and applications
    Lock, James A.
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (11): : 800 - 807
  • [10] Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz-Mie theory
    Votto, Luiz Felipe
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 311