Ramsey Numbers and Adiabatic Quantum Computing

被引:44
|
作者
Gaitan, Frank [1 ]
Clark, Lane [2 ]
机构
[1] Lab Phys Sci, College Pk, MD 20740 USA
[2] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
关键词
COMPLEXITY; ALGORITHM;
D O I
10.1103/PhysRevLett.108.010501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m, n) with m, n >= 3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m, n). We show how the computation of R(m, n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3, 3) and R(2, s) for 5 <= s <= 7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] The smallest Ramsey numbers
    Csákány, R
    Komlós, J
    DISCRETE MATHEMATICS, 1999, 199 (1-3) : 193 - 199
  • [42] RAMSEY NUMBERS FOR TRIPLES
    ABBOTT, HL
    LIU, AC
    DISCRETE MATHEMATICS, 1975, 13 (04) : 299 - 305
  • [43] Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing
    Subasi, Yigit
    Somma, Rolando D.
    Orsucci, Davide
    PHYSICAL REVIEW LETTERS, 2019, 122 (06)
  • [44] Problem Solving with Hopfield Networks and Adiabatic Quantum Computing
    Bauckhage, Christian
    Sanchez, Ramses
    Sifa, Rafet
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [45] RAMSEY AND GALLAI-RAMSEY NUMBERS FOR FORESTS
    Gao, Yujia
    Ji, Meng
    Mao, Yaping
    Wei, Meiqin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [46] Simulation of adiabatic quantum computing for molecular ground states
    Kremenetski, Vladimir
    Mejuto-Zaera, Carlos
    Cotton, Stephen J.
    Tubman, Norm M.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (23):
  • [47] Ramsey numbers for matroids
    Reid, TJ
    EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (05) : 589 - 595
  • [48] Ramsey Numbers of Trails
    Osumi, Masatoshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105A (09) : 1235 - 1240
  • [49] On generalized Ramsey numbers
    Shiu, WC
    Lam, PCB
    Li, YS
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 383 - 388
  • [50] Induced Ramsey numbers
    Kohayakawa, Y
    Prömel, HJ
    Rödl, V
    COMBINATORICA, 1998, 18 (03) : 373 - 404