Ramsey Numbers and Adiabatic Quantum Computing

被引:44
|
作者
Gaitan, Frank [1 ]
Clark, Lane [2 ]
机构
[1] Lab Phys Sci, College Pk, MD 20740 USA
[2] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
关键词
COMPLEXITY; ALGORITHM;
D O I
10.1103/PhysRevLett.108.010501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m, n) with m, n >= 3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m, n). We show how the computation of R(m, n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3, 3) and R(2, s) for 5 <= s <= 7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Irreconcilable difference between quantum walks and adiabatic quantum computing
    Wong, Thomas G.
    Meyer, David A.
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [32] COMPLEMENTARY RAMSEY NUMBERS AND RAMSEY GRAPHS
    Munemasa, Akihiro
    Shinohara, Masashi
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (02) : 146 - 153
  • [33] Quasi-Adiabatic Quantum Computing Treated with c-Numbers Using the Local-Field Response
    Tomaru, Tatsuya
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (03)
  • [34] STAR-CRITICAL RAMSEY NUMBERS AND REGULAR RAMSEY NUMBERS FOR STARS
    Luo, Zhidan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [35] Bipartite Ramsey numbers and Zarankiewicz numbers
    Goddard, W
    Henning, MA
    Oellermann, OR
    DISCRETE MATHEMATICS, 2000, 219 (1-3) : 85 - 95
  • [36] Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing
    Harwood, Stuart M.
    Trenev, Dimitar
    Stober, Spencer T.
    Barkoutsos, Panagiotis
    Gujarati, Tanvi P.
    Mostame, Sarah
    Greenberg, Donny
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2022, 3 (01):
  • [37] EXTENSION OF RAMSEY NUMBERS TO ORDINAL NUMBERS
    HADDAD, L
    SABBAGH, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (20): : 1165 - &
  • [38] Difference Ramsey numbers and Issai numbers
    Robertson, A
    ADVANCES IN APPLIED MATHEMATICS, 2000, 25 (02) : 153 - 162
  • [39] Ordered Ramsey numbers
    Choudum, SA
    Ponnusamy, B
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 79 - 92
  • [40] A NOTE ON RAMSEY NUMBERS
    AJTAI, M
    KOMLOS, J
    SZEMEREDI, E
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (03) : 354 - 360