Ramsey Numbers and Adiabatic Quantum Computing

被引:44
|
作者
Gaitan, Frank [1 ]
Clark, Lane [2 ]
机构
[1] Lab Phys Sci, College Pk, MD 20740 USA
[2] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
关键词
COMPLEXITY; ALGORITHM;
D O I
10.1103/PhysRevLett.108.010501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m, n) with m, n >= 3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m, n). We show how the computation of R(m, n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3, 3) and R(2, s) for 5 <= s <= 7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing
    Hegade, Narendra N.
    Paul, Koushik
    Ding, Yongcheng
    Sanz, Mikel
    Albarran-Arriagada, F.
    Solano, Enrique
    Chen, Xi
    PHYSICAL REVIEW APPLIED, 2021, 15 (02):
  • [22] Adiabatic quantum computing for random satisfiability problems
    Hogg, T
    PHYSICAL REVIEW A, 2003, 67 (02)
  • [23] Random matrix model of adiabatic quantum computing
    Mitchell, DR
    Adami, C
    Lue, W
    Williams, CP
    PHYSICAL REVIEW A, 2005, 71 (05):
  • [24] Adiabatic Quantum Computing for Multi Object Tracking
    Zaech, Jan-Nico
    Liniger, Alexander
    Danelljan, Martin
    Dai, Dengxin
    Gool, Luc Van
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8801 - 8812
  • [25] Digitized adiabatic quantum computing with a superconducting circuit
    R. Barends
    A. Shabani
    L. Lamata
    J. Kelly
    A. Mezzacapo
    U. Las Heras
    R. Babbush
    A. G. Fowler
    B. Campbell
    Yu Chen
    Z. Chen
    B. Chiaro
    A. Dunsworth
    E. Jeffrey
    E. Lucero
    A. Megrant
    J. Y. Mutus
    M. Neeley
    C. Neill
    P. J. J. O’Malley
    C. Quintana
    P. Roushan
    D. Sank
    A. Vainsencher
    J. Wenner
    T. C. White
    E. Solano
    H. Neven
    John M. Martinis
    Nature, 2016, 534 : 222 - 226
  • [26] Adiabatic cluster-state quantum computing
    Bacon, Dave
    Flammia, Steven T.
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [27] General error estimate for adiabatic quantum computing
    Schaller, Gernot
    Mostame, Sarah
    Schuetzhold, Ralf
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [28] Digitized adiabatic quantum computing with a superconducting circuit
    Barends, R.
    Shabani, A.
    Lamata, L.
    Kelly, J.
    Mezzacapo, A.
    Heras, U. Las
    Babbush, R.
    Fowler, A. G.
    Campbell, B.
    Chen, Yu
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Lucero, E.
    Megrant, A.
    Mutus, J. Y.
    Neeley, M.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Solano, E.
    Neven, H.
    Martinis, John M.
    NATURE, 2016, 534 (7606) : 222 - 226
  • [29] Towards Adiabatic Quantum Computing Using Compressed Quantum Circuits
    Mc Keever, Conor
    Lubasch, Michael
    PRX QUANTUM, 2024, 5 (02):
  • [30] Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor
    Chen, Ming-Cheng
    Gong, Ming
    Xu, Xiaosi
    Yuan, Xiao
    Wang, Jian-Wen
    Wang, Can
    Ying, Chong
    Lin, Jin
    Xu, Yu
    Wu, Yulin
    Wang, Shiyu
    Deng, Hui
    Liang, Futian
    Peng, Cheng-Zhi
    Benjamin, Simon C.
    Zhu, Xiaobo
    Lu, Chao-Yang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)