Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

被引:2
|
作者
Chehab, Jean-Paul [1 ]
Raydan, Marcos [2 ]
机构
[1] Univ Picardie Jules Verne, LAMFA, CNRS, UMR 7352, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Simon Bolivar, Dept Comp Cient & Estadist, Ap 89000, Caracas 1080A, Venezuela
关键词
preconditioning; cones of matrices; gradient method; minimal residual method; APPROXIMATE-INVERSE; ITERATIVE METHOD; EQUATIONS;
D O I
10.3390/math4030046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We focus on inverse preconditioners based on minimizing F (X) = 1 - cos (XA, I), where XA is the preconditioned matrix and A is symmetric and positive definite. We present and analyze gradient-type methods to minimize F (X) on a suitable compact set. For this, we use the geometrical properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the special properties of F (X) on the feasible set. Preliminary and encouraging numerical results are also presented in which dense and sparse approximations are included.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] mbend: an R package for bending non-positive-definite symmetric matrices to positive-definite
    Mohammad Ali Nilforooshan
    BMC Genetics, 21
  • [42] Riemannian Laplace Distribution on the Space of Symmetric Positive Definite Matrices
    Hajri, Hatem
    Ilea, Ioana
    Said, Salem
    Bombrun, Lionel
    Berthoumieu, Yannick
    ENTROPY, 2016, 18 (03)
  • [43] "COMPRESS AND ELIMINATE" SOLVER FOR SYMMETRIC POSITIVE DEFINITE SPARSE MATRICES
    Sushnikova, Daria A.
    Oseledets, Ivan, V
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1742 - A1762
  • [44] ON SYMMETRIC NORM INEQUALITIES AND POSITIVE DEFINITE BLOCK-MATRICES
    Mhanna, Antoine
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 133 - 138
  • [45] An Incomplete Cholesky Factorization for Dense Symmetric Positive Definite Matrices
    Chih-Jen Lin
    Romesh Saigal
    BIT Numerical Mathematics, 2000, 40 : 536 - 558
  • [47] On deflation and singular symmetric positive semi-definite matrices
    Tang, J. M.
    Vuik, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) : 603 - 614
  • [48] GEOMETRICAL ASPECT OF SOR AND THEORY OF CONSISTENT ORDERING FOR POSITIVE DEFINITE MATRICES
    NICOLAIDES, RA
    NUMERISCHE MATHEMATIK, 1974, 23 (02) : 99 - 104
  • [49] Inverse problem for symmetric nonnegative definite matrices under submatrix constraint
    College of Mathematics and Econometrics, Hunan Univ, Changsha 410082, China
    Hunan Daxue Xuebao, 2006, 5 (129-131):
  • [50] The inverse problem of geometric and golden means of positive definite matrices
    Lee, Hosoo
    Lim, Yongdo
    ARCHIV DER MATHEMATIK, 2007, 88 (01) : 90 - 96