Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

被引:2
|
作者
Chehab, Jean-Paul [1 ]
Raydan, Marcos [2 ]
机构
[1] Univ Picardie Jules Verne, LAMFA, CNRS, UMR 7352, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Simon Bolivar, Dept Comp Cient & Estadist, Ap 89000, Caracas 1080A, Venezuela
关键词
preconditioning; cones of matrices; gradient method; minimal residual method; APPROXIMATE-INVERSE; ITERATIVE METHOD; EQUATIONS;
D O I
10.3390/math4030046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We focus on inverse preconditioners based on minimizing F (X) = 1 - cos (XA, I), where XA is the preconditioned matrix and A is symmetric and positive definite. We present and analyze gradient-type methods to minimize F (X) on a suitable compact set. For this, we use the geometrical properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the special properties of F (X) on the feasible set. Preliminary and encouraging numerical results are also presented in which dense and sparse approximations are included.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Geometrical properties of the Frobenius condition number for positive definite matrices
    Chehab, Jean-Paul
    Raydan, Marcos
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2089 - 2097
  • [22] The Generalized Inverse Inequalities for the Sum of Symmetric Nonnegative Definite Matrices
    Ma, Ying
    Wang, Shiqing
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 8, 2010, : 572 - 575
  • [23] A General Algorithm to Calculate the Inverse Principal p-th Root of Symmetric Positive Definite Matrices
    Richters, Dorothee
    Lass, Michael
    Walther, Andrea
    Plessl, Christian
    Kuehne, Thomas D.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (02) : 564 - 585
  • [24] Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations
    Fang, Zhi-Wei
    Lin, Xue-Lei
    Ng, Michael K.
    Sun, Hai-Wei
    NUMERISCHE MATHEMATIK, 2021, 147 (03) : 651 - 677
  • [25] ON ADAPTIVE WEIGHTED POLYNOMIAL PRECONDITIONING FOR HERMITIAN POSITIVE-DEFINITE MATRICES
    FISCHER, B
    FREUND, RW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02): : 408 - 426
  • [26] Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations
    Zhi-Wei Fang
    Xue-Lei Lin
    Michael K. Ng
    Hai-Wei Sun
    Numerische Mathematik, 2021, 147 : 651 - 677
  • [27] A trace bound for positive definite connected integer symmetric matrices
    Mckee, James
    Yatsyna, Pavlo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 : 227 - 230
  • [28] Deconvolution Density Estimation on the Space of Positive Definite Symmetric Matrices
    Kim, Peter T.
    Richards, Donald St P.
    NONPARAMETRIC STATISTICS AND MIXTURE MODELS: A FESTSCHRIFT IN HONOR OF THOMAS P HETTMANSPERGER, 2011, : 147 - 168
  • [29] A small note on the scaling of symmetric positive definite semiseparable matrices
    Raf Vandebril
    Gene Golub
    Marc Van Barel
    Numerical Algorithms, 2006, 41 : 319 - 326
  • [30] Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices
    Said, Salem
    Bombrun, Lionel
    Berthoumieu, Yannick
    Manton, Jonathan H.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2153 - 2170